Low-discrepancy Sequence Path Tracing
發(fā)布時(shí)間:2024-02-25 22:28
計(jì)算機(jī)圖形學(xué)是計(jì)算機(jī)科學(xué)的一門(mén)重要的分支,它研究的主要內(nèi)容包含圖形在計(jì)算機(jī)中的表示、圖形的生成與處理和圖形的顯示。計(jì)算機(jī)圖形學(xué)廣泛用于電影特效,游戲制作,虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等領(lǐng)域。在計(jì)算機(jī)繪制圖像中,首先需要使用特定的數(shù)據(jù)結(jié)構(gòu)表示計(jì)算機(jī)建立的模型,然后再將模型轉(zhuǎn)換成屏幕上顯示的圖像;這個(gè)轉(zhuǎn)換過(guò)程,就稱(chēng)為渲染,有些時(shí)候也叫做著色。計(jì)算機(jī)中相同的模型使用不同的渲染方式可以生成不同風(fēng)格的圖像;在不同的應(yīng)用場(chǎng)景中,比如不同風(fēng)格的電影,又或者是實(shí)時(shí)和非實(shí)時(shí)渲染;這些不同的場(chǎng)景中,采用的渲染技術(shù)是有所差別的。所以渲染是計(jì)算機(jī)圖形學(xué)中重要的研究領(lǐng)域,其中真實(shí)感渲染更是廣大研究者的研究重點(diǎn)。真實(shí)感渲染技術(shù)要求按照現(xiàn)實(shí)生活中的場(chǎng)景和光影生成圖像。盡管在實(shí)際應(yīng)用中,很多渲染技術(shù)都是采用了一些近似方法來(lái)模擬真實(shí)的光影表現(xiàn),但是真實(shí)感渲染技術(shù)的最終目的都是生成照片級(jí)的圖像。生成真實(shí)感圖像主要包含兩個(gè)關(guān)鍵步驟,第一步是精確的場(chǎng)景模型表示。由于計(jì)算機(jī)無(wú)法使用連續(xù)的值來(lái)對(duì)場(chǎng)景進(jìn)行描述,所以,首先需要用離散的值精確對(duì)場(chǎng)景進(jìn)行描述。第二步則需要使用真實(shí)感的渲染技術(shù)。早期,由于計(jì)算機(jī)硬件的限制,渲染技術(shù)一直停留在光柵化流...
【文章頁(yè)數(shù)】:77 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
1 Introduction
1.1 Research Background and Significance
1.2 Research Actuality
1.2.1 Graphic Processing Algorithms
1.2.2 The Development and Status of Hardware Architecture of GPU
1.3 Research Content
1.4 Chapter Arrangement
2 Related Concepts
2.1 Research Motivation
2.2 Geometric Optical Model
2.2.1 Illumination Measurement
2.2.2 Bidirectional Reflectance Distribution Function (BRDF)
2.3 Rendering Equation and Ray Tracing
2.4 Path Tracing
2.5 Monte-Carlo Integral
3 Monte-Carlo Path Tracing and Implementation of Common Illumination Models
3.1 Research Motivation
3.2 Overview
3.3 Monte-Carlo Path Tracing Implementation and Convergence Analysis
3.3.1 Algorithms Overview
3.3.2 Intersection Calculation
3.3.3 Calculation the Color of Pixel
3.3.4 Depth Control
3.3.5 Experimental Result and Instance Display
3.4 Experiment on Convergence Analysis of Termination Conditions
3.5 Implementation of Illumination Models
3.5.1 Overview of Illumination Models
3.5.2 Specular Reflection
3.5.3 Diffuse Reflection
3.6 Experimental Result and Analysis
4 Low-discrepancy Ray Tracing
4.1 Research Motivation
4.2 Metrics of the Global Illumination Algorithm
4.2.1 Robustness, Rendering Speed and Accuracy
4.2.2 Discrepancy and Consistency
4.3 Low-Discrepancy Sequence Path Tracing
4.3.1 Convergence analysis of Path Tracing
4.4 Experiment Result and Analysis
4.4.1 Comparison of Convergence between Low Discrepancy Sequencesand Random Sequences
4.4.2 Efficient Implementation of Low-Discrepancy Sequences
4.4.3 Unbiased Low-Discrepancy Sequence Path Tracing Algorithms
4.4.4 Conclusion
5 Parallel Low-Discrepancy Sequence Path Tracing Algorithm
5.1 Research Motivation
5.2 Parallel Low-Discrepancy Sequence Path Tracing Algorithm
5.2.1 Parallel Low-Discrepancy Sequence Path Tracing Based on OpenMP
5.2.2 Parallel Low-Discrepancy Sequence Path Tracing Based on CUDA
5.3 Experimental Results and Analysis
6 Conclusion
References
Acknowledgements
Appendix A 中文摘要
本文編號(hào):3910940
【文章頁(yè)數(shù)】:77 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
1 Introduction
1.1 Research Background and Significance
1.2 Research Actuality
1.2.1 Graphic Processing Algorithms
1.2.2 The Development and Status of Hardware Architecture of GPU
1.3 Research Content
1.4 Chapter Arrangement
2 Related Concepts
2.1 Research Motivation
2.2 Geometric Optical Model
2.2.1 Illumination Measurement
2.2.2 Bidirectional Reflectance Distribution Function (BRDF)
2.3 Rendering Equation and Ray Tracing
2.4 Path Tracing
2.5 Monte-Carlo Integral
3 Monte-Carlo Path Tracing and Implementation of Common Illumination Models
3.1 Research Motivation
3.2 Overview
3.3 Monte-Carlo Path Tracing Implementation and Convergence Analysis
3.3.1 Algorithms Overview
3.3.2 Intersection Calculation
3.3.3 Calculation the Color of Pixel
3.3.4 Depth Control
3.3.5 Experimental Result and Instance Display
3.4 Experiment on Convergence Analysis of Termination Conditions
3.5 Implementation of Illumination Models
3.5.1 Overview of Illumination Models
3.5.2 Specular Reflection
3.5.3 Diffuse Reflection
3.6 Experimental Result and Analysis
4 Low-discrepancy Ray Tracing
4.1 Research Motivation
4.2 Metrics of the Global Illumination Algorithm
4.2.1 Robustness, Rendering Speed and Accuracy
4.2.2 Discrepancy and Consistency
4.3 Low-Discrepancy Sequence Path Tracing
4.3.1 Convergence analysis of Path Tracing
4.4 Experiment Result and Analysis
4.4.1 Comparison of Convergence between Low Discrepancy Sequencesand Random Sequences
4.4.2 Efficient Implementation of Low-Discrepancy Sequences
4.4.3 Unbiased Low-Discrepancy Sequence Path Tracing Algorithms
4.4.4 Conclusion
5 Parallel Low-Discrepancy Sequence Path Tracing Algorithm
5.1 Research Motivation
5.2 Parallel Low-Discrepancy Sequence Path Tracing Algorithm
5.2.1 Parallel Low-Discrepancy Sequence Path Tracing Based on OpenMP
5.2.2 Parallel Low-Discrepancy Sequence Path Tracing Based on CUDA
5.3 Experimental Results and Analysis
6 Conclusion
References
Acknowledgements
Appendix A 中文摘要
本文編號(hào):3910940
本文鏈接:http://sikaile.net/kejilunwen/shengwushengchang/3910940.html
最近更新
教材專(zhuān)著