天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

長(zhǎng)橫擔(dān)輸電塔的風(fēng)致效應(yīng)研究

發(fā)布時(shí)間:2018-09-18 20:35
【摘要】:為節(jié)省線路走廊,近年來(lái)長(zhǎng)懸臂輸電塔得到了廣泛應(yīng)用。此類塔型剛度小,橫擔(dān)層數(shù)多且長(zhǎng)度較大,風(fēng)效應(yīng)復(fù)雜。其結(jié)構(gòu)的高柔特性導(dǎo)致風(fēng)荷載成為設(shè)計(jì)的主控荷載。 目前大部分輸電塔風(fēng)振數(shù)值分析都是基于標(biāo)準(zhǔn)邊界層風(fēng)場(chǎng)進(jìn)行的,對(duì)于多回路長(zhǎng)懸臂塔型在臺(tái)風(fēng)風(fēng)場(chǎng)與標(biāo)準(zhǔn)邊界層風(fēng)場(chǎng)下風(fēng)振響應(yīng)的差異鮮有涉及。以沿海地區(qū)某四回路長(zhǎng)懸臂角鋼輸電塔為原型建立了有限元模型,采用諧波疊加法生成兩類風(fēng)場(chǎng)下的風(fēng)速時(shí)程,并在時(shí)域內(nèi)進(jìn)行了輸電塔風(fēng)振響應(yīng)和風(fēng)振系數(shù)的數(shù)值分析。臺(tái)風(fēng)風(fēng)場(chǎng)的高湍流特性導(dǎo)致其作用時(shí)各測(cè)點(diǎn)的順風(fēng)向風(fēng)振響應(yīng)均大于B類風(fēng)場(chǎng)下的對(duì)應(yīng)值。兩類風(fēng)場(chǎng)下,輸電塔的風(fēng)振系數(shù)比值約為l.25。因此,臺(tái)風(fēng)多發(fā)地區(qū)的輸電塔設(shè)計(jì)須考慮臺(tái)風(fēng)高湍流引起的動(dòng)力風(fēng)荷載增大效應(yīng)。 由于長(zhǎng)懸臂塔型的節(jié)段繞流效應(yīng)復(fù)雜,通過(guò)氣彈模型風(fēng)洞試驗(yàn)來(lái)尋找結(jié)構(gòu)的不利風(fēng)致效應(yīng),是對(duì)抗風(fēng)設(shè)計(jì)理論計(jì)算的補(bǔ)充和改進(jìn)。以上述長(zhǎng)橫擔(dān)角鋼輸電塔為原型,通過(guò)氣彈模型風(fēng)洞試驗(yàn)考察結(jié)構(gòu)的氣動(dòng)失穩(wěn)趨勢(shì)及薄弱部位,并結(jié)合數(shù)值分析進(jìn)行了抗風(fēng)加強(qiáng)措施研究。塔頭部位由于不利的氣固耦合效應(yīng),在高風(fēng)速下出現(xiàn)了較明顯的彎扭耦合振動(dòng)現(xiàn)象;塔身下部長(zhǎng)斜材在風(fēng)振激勵(lì)下,產(chǎn)生局部振動(dòng),易引發(fā)構(gòu)件的壓彎破壞。分別采取增強(qiáng)塔頭斜材和增設(shè)橫隔面等措施對(duì)原結(jié)構(gòu)進(jìn)行抗風(fēng)加強(qiáng)設(shè)計(jì),后續(xù)試驗(yàn)結(jié)果和理論計(jì)算均表明整塔的極限承載能力得到提高。 同時(shí),長(zhǎng)懸臂輸電塔具有橫擔(dān)水平長(zhǎng)度大的特性。來(lái)流紊流易引起風(fēng)壓分布的不對(duì)稱,同時(shí)塔頭構(gòu)造復(fù)雜,構(gòu)件周圍特征湍流明顯,會(huì)產(chǎn)生一定的動(dòng)態(tài)扭轉(zhuǎn)風(fēng)荷載。以沿海地區(qū)某500kV某長(zhǎng)懸臂鋼管輸電塔為研究對(duì)象,基于HFFB試驗(yàn)和頻域理論分析,得到了來(lái)流不均勻和構(gòu)件周圍特征湍流引起的扭轉(zhuǎn)氣動(dòng)力。結(jié)果表明在進(jìn)行長(zhǎng)懸臂輸電塔設(shè)計(jì)時(shí),應(yīng)同時(shí)考慮來(lái)流風(fēng)壓不均勻以及特征湍流產(chǎn)生的扭轉(zhuǎn)效應(yīng)的影響。
[Abstract]:In order to save line corridor, long cantilever transmission tower has been widely used in recent years. This type of tower has a small stiffness, a large number of layers and a large length, and the wind effect is complex. The flexibility of the structure results in the wind load becoming the main control load of the design. At present, most numerical analysis of wind vibration of transmission tower is based on standard boundary layer wind field, and the difference of wind vibration response of multi-loop long cantilever tower under typhoon wind field and standard boundary layer wind field is seldom involved. The finite element model of a four-circuit long cantilever angle steel transmission tower in coastal area is established. The wind speed time history under two kinds of wind field is generated by harmonic superposition method. The wind vibration response and wind vibration coefficient of transmission tower are analyzed numerically in time domain. Due to the high turbulence characteristics of typhoon wind field, the downwind vibration response of each measuring point is larger than the corresponding value of B type wind field. Under two kinds of wind field, the ratio of wind vibration coefficient of transmission tower is about 1. 25. Therefore, the increasing effect of dynamic wind load caused by typhoon turbulence should be taken into account in the design of transmission towers in typhoon prone areas. Because of the complex flow around the section of long cantilever tower, the wind tunnel test of Aeroelastic model is used to find the unfavorable wind-induced effect of the structure, which is a supplement and improvement to the calculation of anti-wind design theory. Taking the long cross-pole angle steel transmission tower as the prototype, the aerodynamic instability trend and weak position of the structure were investigated by wind tunnel test with the Aeroelastic model, and the measures to strengthen the wind resistance were studied in combination with the numerical analysis. Due to the unfavorable gas-solid coupling effect at the head of the tower, the bending-torsional coupling vibration appears at high wind speed, and the inclined material under the tower body produces local vibration under the wind vibration, which can easily lead to the compression and bending failure of the members. The wind-resistant strengthening design of the original structure is carried out by means of strengthening the tower head oblique material and adding the transverse plane respectively. The results of subsequent test and theoretical calculation show that the ultimate bearing capacity of the whole tower has been improved. At the same time, the long cantilever transmission tower has the characteristics of large horizontal length. It is easy to cause asymmetry of wind pressure distribution due to incoming turbulence. At the same time, the structure of tower head is complicated and the characteristic turbulence around members is obvious, which will result in certain dynamic torsional wind load. Taking a long cantilever steel tube transmission tower of 500kV in coastal area as the research object, based on the HFFB test and frequency domain theory analysis, the torsional aerodynamic force caused by uneven incoming flow and characteristic turbulence around the member is obtained. The results show that in the design of long cantilever transmission tower, the influence of non-uniform wind pressure and torsional effect caused by characteristic turbulence should be taken into account at the same time.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU347;TU312.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 屈成忠;劉春玲;李霞;張有佳;;500kV貓頭塔結(jié)構(gòu)動(dòng)力特性分析[J];東北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期

2 陳雋,徐幼麟,李杰;Hilbert-Huang變換在密頻結(jié)構(gòu)阻尼識(shí)別中的應(yīng)用[J];地震工程與工程振動(dòng);2003年04期

3 甘鳳林;楊振偉;代曉光;;基于諧波合成法的輸電塔線體系風(fēng)致響應(yīng)分析[J];電網(wǎng)技術(shù);2009年18期

4 謝強(qiáng);管政;嚴(yán)承涌;;1000kV輸電塔橫風(fēng)向振動(dòng)風(fēng)洞試驗(yàn)研究[J];電網(wǎng)技術(shù);2011年05期

5 張琳琳;謝強(qiáng);李杰;;輸電線路多塔耦聯(lián)體系的風(fēng)致動(dòng)力響應(yīng)分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2006年03期

6 樓文娟,孫炳楠;風(fēng)與結(jié)構(gòu)的耦合作用及風(fēng)振響應(yīng)分析[J];工程力學(xué);2000年05期

7 白海峰;李宏男;;大跨越輸電塔線體系隨機(jī)脈動(dòng)風(fēng)場(chǎng)模擬研究[J];工程力學(xué);2007年07期

8 謝強(qiáng);閻啟;李杰;;橫隔面在高壓輸電塔抗風(fēng)設(shè)計(jì)中的作用分析[J];高電壓技術(shù);2006年04期

9 謝強(qiáng);丁兆東;趙桂峰;李杰;;不同橫隔面配置方式的輸電塔抗風(fēng)動(dòng)力響應(yīng)分析[J];高電壓技術(shù);2009年03期

10 劉錫良,周穎;風(fēng)荷載的幾種模擬方法[J];工業(yè)建筑;2005年05期

,

本文編號(hào):2249036

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2249036.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a2aa3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com