層狀節(jié)理巖體高邊坡地震動(dòng)力破壞機(jī)理研究
本文選題:邊坡 + 地震 ; 參考:《中國(guó)地質(zhì)大學(xué)》2013年博士論文
【摘要】:地震誘發(fā)的層狀節(jié)理巖體高邊坡破壞是一種常見(jiàn)的的自然地質(zhì)災(zāi)害,破壞范圍極大,破壞力極強(qiáng)。對(duì)于其地震動(dòng)力破壞機(jī)理的研究,涉及到多學(xué)科的交叉,一直是科學(xué)界的研究重點(diǎn)和難點(diǎn)之一。目前的研究手段和研究方法多數(shù)借鑒于對(duì)土質(zhì)邊坡地震動(dòng)力破壞機(jī)理研究的成果,不能很好的反映出層狀節(jié)理巖體的結(jié)構(gòu)特征和動(dòng)力變形破壞特點(diǎn)。本文從層狀節(jié)理巖體的物理力學(xué)特征入手,以結(jié)構(gòu)面網(wǎng)絡(luò)控制理論為核心思想,綜合利用工程地質(zhì)分析法、巖體力學(xué)理論、巖石斷裂力學(xué)理論、物理模型試驗(yàn)手段和數(shù)值模擬試驗(yàn)手段,分別針對(duì)順層節(jié)理巖體高邊坡、逆層節(jié)理巖體高邊坡和近水平層狀節(jié)理巖體高邊坡的地震動(dòng)力破壞機(jī)理進(jìn)行了系統(tǒng)的研究探索,主要的研究結(jié)論如下: 以結(jié)構(gòu)面網(wǎng)絡(luò)控制理論為指導(dǎo)思想,系統(tǒng)分析了三種層狀節(jié)理巖體高邊坡的巖體結(jié)構(gòu)面網(wǎng)絡(luò)發(fā)育特征和物理力學(xué)性質(zhì),將結(jié)構(gòu)面分為層面和正交次級(jí)節(jié)理面兩大類,認(rèn)為層面和正交次級(jí)節(jié)理均存在著貫通部分和非貫通部分;著重強(qiáng)調(diào)了正交次級(jí)節(jié)理對(duì)巖體邊坡地震動(dòng)力穩(wěn)定性的影響;指出巖體結(jié)構(gòu)面的非貫通部分所具有的強(qiáng)度對(duì)巖體邊坡地震動(dòng)力穩(wěn)定性的貢獻(xiàn)十分顯著。 運(yùn)用巖體力學(xué)理論和巖石斷裂力學(xué)理論,通過(guò)理論推導(dǎo)和對(duì)前人試驗(yàn)結(jié)果的分析,明確了巖石材料內(nèi)部的微裂紋只能產(chǎn)生Ⅰ型張拉破壞,而所謂的巖石裂紋Ⅱ型剪切破壞,實(shí)際上是由無(wú)數(shù)微觀的Ⅰ型張拉破壞面連接而成的細(xì)觀破壞面,其尺度已經(jīng)超出經(jīng)典材料斷裂力學(xué)微觀尺度研究范疇,不屬于真正意義上的裂紋Ⅱ型剪切破壞,從而說(shuō)明巖石斷裂力學(xué)實(shí)際上是一門介于微觀和宏觀尺度之間的材料科學(xué)。推導(dǎo)了層狀巖體層面內(nèi)部細(xì)觀裂紋擴(kuò)展貫通的斷裂力學(xué)計(jì)算公式和破壞判據(jù),研究了在不同應(yīng)力條件下和不同的層面強(qiáng)度條件下層面內(nèi)部裂紋擴(kuò)展貫通的規(guī)律。研究結(jié)果證明,層面的強(qiáng)度與受力狀態(tài)相關(guān),并且層面強(qiáng)度與完整巖塊強(qiáng)度的比值會(huì)影響層面的擴(kuò)展模式。改進(jìn)了層狀巖體內(nèi)部正交次級(jí)節(jié)理形成機(jī)制構(gòu)造力學(xué)模型,并分析了不同構(gòu)造力學(xué)條件下正交次級(jí)節(jié)理擴(kuò)展的斷裂力學(xué)機(jī)制。利用巖石斷裂力學(xué)理論從力學(xué)角度系統(tǒng)研究和總結(jié)了為何層狀巖體中的正交次級(jí)節(jié)理無(wú)法穿透層面切割多層巖石。研究結(jié)果表明,產(chǎn)生這種現(xiàn)象的原因主要有:正交次級(jí)節(jié)理無(wú)法穿透已經(jīng)產(chǎn)生貫通的層面;由于非貫通層面斷裂韌度遠(yuǎn)低于完整巖塊斷裂韌度,因此正交次級(jí)節(jié)理在擴(kuò)展至與非貫通層面交匯時(shí),無(wú)論處于何種應(yīng)力狀態(tài),均會(huì)優(yōu)先沿層面延伸方向產(chǎn)生擴(kuò)展,使層面逐漸貫通,而無(wú)法切穿非貫通層面進(jìn)而切割多層巖石。 總結(jié)了順層、逆層和近水平層狀節(jié)理巖體高邊坡地震動(dòng)力破壞基本特征,改進(jìn)了各類邊坡的地震動(dòng)力破壞模型。以結(jié)構(gòu)面網(wǎng)絡(luò)控制理論為指導(dǎo),分別對(duì)順層、逆層和近水平層狀節(jié)理巖體高邊坡在地震動(dòng)力作用下內(nèi)部層面和正交次級(jí)節(jié)理面的破壞模式進(jìn)行了詳細(xì)的分類研究,通過(guò)研究證明,對(duì)于順層節(jié)理巖體高邊坡,在水平地震動(dòng)力作用下其內(nèi)部非貫通層面部位也可能處于受拉應(yīng)力狀態(tài),產(chǎn)生張拉破壞,并非只能產(chǎn)生剪切破壞。通過(guò)分析指出,貫通結(jié)構(gòu)面由于膠結(jié)或填充作用所具有的微小抗拉強(qiáng)度不能在動(dòng)力破壞分析過(guò)程中被忽視,因?yàn)楫?dāng)抗拉強(qiáng)度喪失后,貫通結(jié)構(gòu)面的抗剪強(qiáng)度也會(huì)顯著減小。為此,提出了考慮貫通結(jié)構(gòu)面動(dòng)力破壞過(guò)程中抗拉強(qiáng)度與抗剪強(qiáng)度關(guān)系的改進(jìn)Mohr-Coulomb破壞準(zhǔn)則。 使用相似材料制作了含有非連續(xù)的層面和非貫通的次級(jí)節(jié)理順層和逆層巖質(zhì)邊坡物理模型,并對(duì)其進(jìn)行了離心機(jī)動(dòng)力試驗(yàn)研究。對(duì)巖石相似材料的常規(guī)試驗(yàn)和裂紋擴(kuò)展試驗(yàn)結(jié)果證明本文所設(shè)計(jì)的巖石相似材料制作方法和閉合接觸層面和次級(jí)節(jié)理制作方法能夠較好的反映真實(shí)層狀節(jié)理巖體的物理力學(xué)特性。巖石相似材料采用石膏和細(xì)砂及水的混合物通過(guò)標(biāo)準(zhǔn)化的制備方法制成,其物理力學(xué)特性與沉積砂巖近似:設(shè)計(jì)了新的工藝和新的方法,首次實(shí)現(xiàn)了完全閉合接觸的貫通層面的制作;實(shí)現(xiàn)了層面非貫通部位的精確位置控制和較為精確的強(qiáng)度控制;設(shè)計(jì)并改進(jìn)了離心機(jī)試驗(yàn)系統(tǒng),其中改進(jìn)了試驗(yàn)加載平臺(tái),使其適用于巖體邊坡模型動(dòng)力試驗(yàn);設(shè)計(jì)了新的裂隙擴(kuò)展監(jiān)測(cè)裝置,用于監(jiān)測(cè)邊坡層面的準(zhǔn)確破壞時(shí)刻。離心機(jī)模型試驗(yàn)結(jié)果證明:①邊坡地形放大效應(yīng)與地震動(dòng)力輸入頻率和振幅有關(guān),并分析推斷產(chǎn)生這種現(xiàn)象的原因?yàn)檫吰伦枘岬挠绊?阻尼不是常數(shù),與震動(dòng)頻率有關(guān),并且阻尼越大,邊坡的地形放大效應(yīng)越明顯;②層狀巖體中廣泛發(fā)育的正交次級(jí)節(jié)理對(duì)層狀巖質(zhì)邊坡的動(dòng)力響應(yīng)和動(dòng)力破壞均存在顯著的影響,含有正交次級(jí)節(jié)理的邊坡模型動(dòng)力穩(wěn)定性小于不含有正交次級(jí)節(jié)理的邊坡模型。 完善了使用非連續(xù)性介質(zhì)模擬方法和連續(xù)性介質(zhì)模擬方法進(jìn)行層狀節(jié)理巖體高邊坡建模進(jìn)行耦合計(jì)算的原理及具體實(shí)現(xiàn)方法。其中非連續(xù)介質(zhì)建模部分采用PFC2D軟件,連續(xù)性介質(zhì)建模部分采用FLAC軟件。系統(tǒng)研究了由顆粒集合體粘結(jié)而成的PFC2D巖塊模型中顆粒細(xì)觀參數(shù)與模型宏觀參數(shù)之間的關(guān)系;改進(jìn)了非貫通Smooth Joint接觸模型破壞準(zhǔn)則,設(shè)計(jì)了兩種在PFC2D層狀巖體模型內(nèi)部表達(dá)層狀巖體內(nèi)部正交次級(jí)節(jié)理的方法,即通過(guò)折減層間巖塊強(qiáng)度的隱式方法,和使用改進(jìn)的Smooth Joint接觸模型顯式添加正交次級(jí)節(jié)理的方法:建立了PFC2D層狀巖體模型,通過(guò)對(duì)模型進(jìn)行單軸抗壓試驗(yàn),并與巖石斷裂力學(xué)理論計(jì)算結(jié)果相對(duì)比,證明了該模型的適用型。 分別建立了順層、逆層、近水平層狀節(jié)理巖體高邊坡PFC2D/FLAC耦合計(jì)算模型,進(jìn)行了邊坡地震動(dòng)力破壞過(guò)程數(shù)值模擬,分析了各類邊坡地震動(dòng)力破壞的基本模式,并針對(duì)層狀節(jié)理巖體中層面和正交次級(jí)節(jié)理的參數(shù)對(duì)邊坡地震動(dòng)力破壞過(guò)程的影響進(jìn)行了試驗(yàn)研究,研究結(jié)果如下: 在地震動(dòng)力破壞過(guò)程中,順層節(jié)理巖體邊坡主要沿層面與正交次級(jí)節(jié)理組合而成的破壞面產(chǎn)生滑動(dòng)破壞。內(nèi)部非貫通層面不只會(huì)產(chǎn)生剪切破壞,而且會(huì)產(chǎn)生張拉破壞;正交次級(jí)節(jié)理主要產(chǎn)生張拉破壞,幾乎不存在剪切破壞。非貫通層面部分的強(qiáng)度和層面貫通率對(duì)順層邊坡地震動(dòng)力穩(wěn)定性的影響十分明顯,貫通層面摩擦角的影響較;非貫通正交次級(jí)節(jié)理強(qiáng)度和節(jié)理間距對(duì)邊坡地震動(dòng)力穩(wěn)定性、破壞模式、破壞范圍均有著顯著的影響:貫通正交次級(jí)節(jié)理的摩擦角對(duì)邊坡地震動(dòng)力過(guò)程幾乎不產(chǎn)生影響。試驗(yàn)結(jié)果證明,層狀巖體中廣泛發(fā)育的正交次級(jí)節(jié)理對(duì)順層巖體邊坡地震動(dòng)力破壞模式影響顯著,在進(jìn)行順層節(jié)理巖體邊坡地震動(dòng)力穩(wěn)定性分析時(shí),必須考慮正交次級(jí)節(jié)理的發(fā)育對(duì)其破壞模式和穩(wěn)定性的影響。實(shí)驗(yàn)結(jié)果還證明,順層巖體邊坡地震動(dòng)力順層滑動(dòng)破壞機(jī)理的傳統(tǒng)理論存在著漏洞,順層邊坡內(nèi)部的層面,即使在如本文所施加的水平地震動(dòng)力作用下,仍然可以產(chǎn)生張拉破壞,因此在對(duì)邊坡地震動(dòng)力穩(wěn)定性的研究中,必須考慮層面抗拉強(qiáng)度的影響。試驗(yàn)中順層節(jié)理巖體高邊坡的動(dòng)力破壞是一個(gè)漸進(jìn)的過(guò)程,隨著地震動(dòng)力輸入的增強(qiáng),邊坡破壞區(qū)域由表層區(qū)域逐漸向邊坡內(nèi)部擴(kuò)展,邊坡在破壞過(guò)程中內(nèi)部會(huì)形成多條貫通破壞面,破壞區(qū)域的巖體在地震動(dòng)力作用過(guò)程中也會(huì)產(chǎn)生內(nèi)部的解體。因此,傳統(tǒng)的只針對(duì)某一指定潛在破壞面進(jìn)行的順層邊坡地震動(dòng)力穩(wěn)定性分析,只能計(jì)算出邊坡沿著該指定破壞面破壞的情況下的穩(wěn)定性,但這不能完整的表達(dá)邊坡的實(shí)際動(dòng)力穩(wěn)定性。為此,設(shè)計(jì)了一種新的順層節(jié)理巖體邊坡動(dòng)力穩(wěn)定性判定方法,采用兩個(gè)基本參數(shù)進(jìn)行破壞判別:①邊坡內(nèi)部形成首條貫通破壞面所需的地震動(dòng)力輸入強(qiáng)度;②首條貫通破壞面所圍破壞區(qū)域大小。該判定方法既可以判斷邊坡的動(dòng)力穩(wěn)定性,又可以判斷邊坡失穩(wěn)后破壞范圍的大小。 在地震動(dòng)力破壞過(guò)程中,逆層節(jié)理巖體高邊坡主要產(chǎn)生傾倒破壞,內(nèi)部層面主要產(chǎn)生剪切破壞和張拉破壞,以剪切破壞為主,張拉破壞所占比例很小,并且均集中于逆層邊坡坡體頂部位置。坡頂巖層主要產(chǎn)生沿正交次級(jí)節(jié)理的張拉破壞,形成轉(zhuǎn)動(dòng)位移,產(chǎn)生宏觀的傾倒;而坡底的正交次級(jí)節(jié)理既會(huì)產(chǎn)生張拉破壞,也會(huì)產(chǎn)生剪切破壞,坡底巖層產(chǎn)生的轉(zhuǎn)動(dòng)位移很小,而滑動(dòng)位移趨勢(shì)明顯。非貫通層面部分的強(qiáng)度和層面貫通率對(duì)逆層邊坡地震動(dòng)力穩(wěn)定性的影響十分明顯,而貫通層面部分的抗剪強(qiáng)度的影響較小。非貫通正交次級(jí)節(jié)理強(qiáng)度、貫通正交次級(jí)節(jié)理抗剪強(qiáng)度、正交次級(jí)節(jié)理間距三個(gè)參數(shù)均會(huì)對(duì)邊坡地震動(dòng)力穩(wěn)定性產(chǎn)生一定的影響,但影響的程度十分有限。在地震動(dòng)力作用下逆層邊坡坡頂巖層內(nèi)的正交次級(jí)節(jié)理首先產(chǎn)生張拉破壞,使頂部巖體產(chǎn)生傾倒趨勢(shì),然后才是邊坡底部巖層內(nèi)部的正交次級(jí)節(jié)理產(chǎn)生剪切破壞和張拉破壞,使底部巖體形成貫通破壞面,產(chǎn)生滑動(dòng)位移。而對(duì)逆層邊坡的傳統(tǒng)靜力學(xué)分析認(rèn)為在靜力條件下,邊坡底部巖體首先產(chǎn)生破壞,導(dǎo)致上覆巖體失去支撐形成傾倒破壞。這一破壞順序的差別充分反映出了正交次級(jí)節(jié)理的存在對(duì)邊坡地震動(dòng)力破壞過(guò)程的影響,并體現(xiàn)出了逆層邊坡靜力破壞與動(dòng)力破壞過(guò)程的區(qū)別。 在地震動(dòng)力破壞過(guò)程中,近水平層狀節(jié)理巖體邊坡內(nèi)部巖體產(chǎn)生了大量的漸進(jìn)式破壞,其中包含了張拉破壞和剪切破壞,以張拉破壞為主。巖體首先產(chǎn)生大量的近豎直方向延伸的宏觀張拉裂縫,隨著這些裂縫數(shù)量的增加和密度的增大,相互連接形成宏觀的剪切破壞面,構(gòu)成了圓弧狀的破壞面。隨著正交次級(jí)節(jié)理強(qiáng)度的提升,邊坡的地震動(dòng)力穩(wěn)定性相應(yīng)提升。邊坡表層破碎巖體的厚度在很大程度上控制著邊坡產(chǎn)生整體破壞的破壞范圍,隨著厚度的增大,破壞范圍相應(yīng)增大。貫通層面抗剪強(qiáng)度對(duì)邊坡地震動(dòng)力穩(wěn)定性、動(dòng)力破壞過(guò)程的影響非常小。隨著層面傾角的變化,邊坡逐漸從順層緩傾過(guò)渡到逆層緩傾,在相同地震強(qiáng)度作用下邊坡地震永久位移隨著傾角的減小逐漸減小,并呈現(xiàn)近似指數(shù)關(guān)系。因此,在進(jìn)行近水平層狀節(jié)理巖體邊坡地震動(dòng)力穩(wěn)定性分析過(guò)程中,無(wú)法找出一個(gè)固定的永久位移閥值,來(lái)統(tǒng)一判斷不同傾角邊坡的臨界失穩(wěn)狀態(tài)。 選取在5.12汶川地震中產(chǎn)生破壞的四川省北川縣孫家園滑坡為計(jì)算實(shí)例,建立其FLAC/PFC2D耦合模型進(jìn)行地震動(dòng)力破壞過(guò)程數(shù)值模擬。模擬結(jié)果顯示,孫家園滑坡在汶川地震作用下,先后經(jīng)歷巖體內(nèi)部破損、邊坡局部崩滑、邊坡大面積失穩(wěn)、破壞體解體形成巖石碎屑流、沿山體高速運(yùn)移刮鏟山體表層破損巖體、減速堆積堵塞河道幾個(gè)階段。計(jì)算結(jié)果與實(shí)際情況符合程度較高。
[Abstract]:The destruction of the high slope of the earthquake induced layered jointed rock mass is a common natural geological hazard, which has great damage range and very strong destructive force. It is one of the key and difficult points for the scientific community to study the mechanism of its earthquake dynamic failure, and it is always one of the key and difficult points in the scientific circle. The results of the study of the seismic dynamic failure mechanism of the soil slope can not well reflect the structural characteristics of the layered jointed rock mass and the characteristics of the dynamic deformation and failure. This paper, starting with the physical and mechanical characteristics of the layered jointed rock mass, takes the network control theory of structural surface as the core idea, comprehensive application of engineering geological analysis, rock mechanics theory and rock The fracture mechanics theory, the physical model test means and the numerical simulation test means to study the seismic dynamic failure mechanism of the high slope of the bedding jointed rock mass, the high slope of the inverse jointed jointed rock mass and the high slope of the near horizontal jointed rock mass, and the main research conclusions are as follows:
Based on the theory of structural plane network control, the network development characteristics and physical and mechanical properties of the rock mass structure surface of three kinds of layered rock mass high slope are systematically analyzed, and the structure surface is divided into two categories, the layer and the orthogonal secondary joint surface, and it is considered that the layer and the orthogonal secondary joint are both in the through and non through parts. The influence of the orthogonal secondary joint on the seismic dynamic stability of rock slope is discussed, and it is pointed out that the strength of the non penetrating part of the rock mass has great contribution to the seismic dynamic stability of the rock slope.
By means of rock mechanics theory and rock fracture mechanics theory, through theoretical deduction and analysis of previous experimental results, it is clear that the micro cracks within the rock material can only produce type I tensile failure, and the so-called rock crack type II shear failure is actually a mesoscopic failure surface connected by a number of microcosmic type I tensile failure surfaces. Its scale has exceeded the microscopic scale of fracture mechanics of classical materials and does not belong to the true sense of crack type II shear failure, which indicates that rock fracture mechanics is actually a material science between microcosmic and macroscopic scale. The formula and failure criterion are used to study the law of crack propagation through the internal crack under different stress conditions and different layers of strength. The results show that the strength of the layer is related to the stress state, and the ratio of the strength of the layer to the strength of the complete rock will affect the expansion mode of the layer. The structural mechanics model of the formation mechanism of the stage joints is made and the fracture mechanics mechanism of the orthogonal secondary joint expansion under different tectonic mechanics is analyzed. By using the rock fracture mechanics theory, the paper studies and summarizes the reason that the orthogonal secondary joint in the layered rock can not cut through the layer surface to cut the multilayer rock. The main reasons for this phenomenon are as follows: the orthogonal secondary joint can not penetrate into the penetrated layer; because the fracture toughness of the non penetrating layer is far lower than the fracture toughness of the intact rock, the orthogonal secondary joint will extend to the non through layer, and in any stress state, it will give priority to the expansion along the extension direction. The exhibition gradually penetrated the layers, and could not cut through the non penetrating layers to cut the multi-layered rock.
The basic characteristics of the seismic dynamic failure of the high slope of the bedding, reverse and near horizontal jointed rock masses are summarized, and the seismic dynamic failure models of various slopes are improved. With the guidance of the structure surface network control theory, the internal and orthogonal secondary joints of the high side slope of the bedding, reverse and near horizontal jointed rock mass are respectively under the action of seismic dynamic action. The failure mode of the surface is studied in detail. Through the study, it is proved that for the high slope of the bedding jointed rock mass, it may also be in the state of tensile stress under the action of horizontal seismic dynamic force, which produces tensile failure and not only produces shear failure. Through analysis, it is pointed out that the perforated structure surface is due to cementation or filling. The micro tensile strength of the filling can not be ignored in the process of dynamic failure analysis, because when the tensile strength is lost, the shear strength of the perforated structure will be reduced significantly. Therefore, an improved Mohr-Coulomb failure criterion is proposed to consider the relationship between the tensile strength and the shear strength during the dynamic failure process of the perforated structure.
Using similar materials, a physical model of a secondary and non penetrating secondary jointed and reverse rock slope is made, and a centrifuge dynamic test is carried out. The conventional test and crack propagation test of similar rock materials prove the method of making the similar material and the closed contact layer designed in this paper. The surface and secondary joint method can better reflect the physical and mechanical properties of the real layered jointed rock mass. The rock similar material is made of a standard preparation method by using a mixture of gypsum and fine sand and water through a standardized preparation method. The physical and mechanical properties of the rock are similar to the sedimentary sandstone. A new process and new method are designed and the complete closure is realized for the first time. The production of close contact layer is made, the precise position control and the precise strength control are realized, and the centrifuge test system is designed and improved, which improves the test loading platform, makes it suitable for the dynamic test of rock slope model, and designs a new crack extension monitoring device for monitoring edge. The results of the centrifuge model test prove that the magnification effect of the slope is related to the frequency and amplitude of the seismic dynamic input, and the reason is that the cause of this phenomenon is the influence of the slope damping. The damping is not constant, which is related to the frequency of the vibration, and the greater the damping, the greater the terrain magnification effect of the slope is. There is a significant influence on the dynamic response and dynamic failure of the layered rock slope, and the dynamic stability of the slope model containing the orthogonal secondary joint is less than that of the slope model without the orthogonal secondary joint.
The principle and concrete realization method of coupling calculation with non continuous medium simulation method and continuous medium simulation method for high slope modeling of layered jointed rock mass are perfected. The modeling part of discontinuous medium uses PFC2D software and FLAC software is used in the modeling part of continuous medium. In the PFC2D rock mass model, the relation between the fine parameters of the particle and the macroscopic parameters of the model, improved the failure criterion of the non through Smooth Joint contact model, and designed two methods to express the orthogonal secondary joint inside the layered rock mass in the PFC2D stratified rock mass model, that is, the implicit method of reducing the strength of the rock mass between the layers and the use. The improved Smooth Joint contact model is used to explicitly add the orthogonal secondary joint. The PFC2D layered rock mass model is established. Through the uniaxial compression test of the model, the model is compared with the rock fracture mechanics theory. The model is proved to be applicable.
The PFC2D/FLAC coupling calculation model of the high slope of the bedding, reverse and near horizontal jointed rock mass is established respectively, and the numerical simulation of the seismic dynamic failure process of the slope is carried out. The basic modes of the seismic dynamic failure of various slopes are analyzed, and the seismic dynamic failure of the slope in the stratified jointed rock mass and the secondary joints of the normal intersection is destroyed. The effect of the process is studied. The results are as follows:
In the process of seismic dynamic failure, the rock slope of the bedding jointed jointed rock mass is mainly caused by the failure surface which is combined with the orthogonal secondary joint. The internal non perforation layer will not only produce shear failure, but also produce tensile failure; the orthogonal secondary joint mainly produces tensile failure and almost no shear failure. The influence of the strength and the penetration rate on the seismic dynamic stability of the bedding slope is very obvious, and the friction angle of the penetration level is less. The non penetrating orthogonal secondary joint strength and joint spacing have significant influence on the dynamic stability of the slope, the failure mode and the damage range, and the friction angle through the orthogonal secondary joint is carried out. It has almost no effect on the seismic dynamic process of the slope. The experimental results have proved that the widely developed orthogonal secondary joint in the layered rock mass has a significant influence on the seismic dynamic failure mode of the bedding rock slope, and the failure mode of the development of the orthogonal secondary joints must be considered when the seismic dynamic stability of the bedding jointed rock slope is analyzed. The experimental results also prove that there is a loophole in the traditional theory of the failure mechanism of the sliding failure of the bedding rock slope, and the level of the inner side of the bedding slope can still produce tensile failure even under the effect of the horizontal seismic dynamic exerted in this paper. Therefore, it is necessary to study the seismic dynamic stability of the slope. The dynamic failure of the high slope of the bedding jointed rock mass in the test is a gradual process. With the enhancement of the seismic dynamic input, the slope failure region gradually extends from the surface area to the side of the slope, and a number of perforated failure surfaces will be formed inside the slope during the failure process, and the rock mass in the region is destroyed in the earthquake. In the process of dynamic action, the internal disintegration will also be produced. Therefore, the analysis of the seismic dynamic stability of the bedding slope, which is only aimed at a certain specified potential failure surface, can only calculate the stability of the slope under the specified failure surface, but this can not fully express the actual dynamic stability of the slope. For this reason, the design of the slope can not be fully expressed. A new method for determining the dynamic stability of the rock slope of the bedding jointed rock mass is made, and two basic parameters are used to judge the failure of the slope. (1) the seismic dynamic input strength required for the formation of the first perforated failure surface in the slope; It can be used to judge the size of the failure range after the slope is unstable.
In the process of seismic dynamic failure, the high slope of the rock mass of the reverse layer mainly produces toppling failure, and the internal layer mainly produces shear failure and tensile failure, which is mainly shear failure, and the proportion of tensile failure is very small, and it concentrates on the top position of the reverse slope slope. The top rock formation mainly produces tensile failure along the orthogonal secondary joints. The rotation displacement of the slope is formed, and the orthogonal secondary joints at the bottom of the slope not only produce tensile failure, but also produce shear failure. The rotation displacement of the slope bottom rock is very small and the sliding displacement trend is obvious. The strength and the penetration rate of the non penetrating layer have a very obvious influence on the seismic dynamic stability of the reverse slope. The shear strength of the cross section is less. The non through orthogonal secondary joint strength, through the orthogonal secondary joint shear strength, and the orthogonal secondary joint space three parameters will have a certain influence on the slope seismic dynamic stability, but the degree of influence is very limited. The orthogonal secondary joint first produces tensile failure, which causes the toppling tendency of the top rock mass, and then is the shear failure and tensile failure of the orthogonal secondary joint in the bottom rock of the bottom of the slope, making the bottom rock forming a perforated failure surface and producing sliding displacement. The rock mass at the bottom of the slope is first damaged, which causes the overlying rock mass to lose its support and form the toppling failure. The difference of the destruction sequence fully reflects the influence of the existence of the orthogonal secondary joint on the seismic dynamic failure process of the slope, and shows the difference between the static failure and the dynamic breaking process of the reverse slope.
In the process of seismic dynamic failure, the rock mass in the rock slope of the near horizontal jointed rock mass has a large number of progressive failure, including tensile failure and shear failure, which is dominated by tensile failure. The rock mass first produces a large number of near vertical directions.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳明;盧文波;周創(chuàng)兵;舒大強(qiáng);許紅濤;;基于等效加速度的巖質(zhì)邊坡爆破動(dòng)力穩(wěn)定性[J];爆炸與沖擊;2011年05期
2 李欣;李樹(shù)文;王樹(shù)根;任偉中;;數(shù)字近景攝影測(cè)量在高速公路邊坡物理模型變形測(cè)量中的應(yīng)用[J];測(cè)繪科學(xué);2011年05期
3 錢勝國(guó) ,陸秋蓉;三峽溢流壩段動(dòng)力特性及動(dòng)力反應(yīng)分析[J];長(zhǎng)江科學(xué)院院報(bào);1991年02期
4 何蘊(yùn)龍,陸述遠(yuǎn),段亞輝;巖石邊坡地震作用計(jì)算方法研究[J];長(zhǎng)江科學(xué)院院報(bào);1998年04期
5 陳洪凱;;三峽庫(kù)區(qū)危巖鏈?zhǔn)揭?guī)律的地貌學(xué)解譯[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
6 史石榮;陳林杰;余超;;基于強(qiáng)度折減法的高烈度地震區(qū)邊坡穩(wěn)定性分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
7 趙彪;陳洪凱;;邊坡地震穩(wěn)定性完全動(dòng)力分析法[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年S1期
8 陳建平,唐輝明,李學(xué)東;巖質(zhì)邊坡錨噴加固應(yīng)用中的幾個(gè)問(wèn)題[J];地球科學(xué);2001年04期
9 胡新麗;唐輝明;朱麗霞;;汶川震中巖漿巖高邊坡破壞模式與崩塌機(jī)理[J];地球科學(xué)(中國(guó)地質(zhì)大學(xué)學(xué)報(bào));2011年06期
10 劉斌,王寶善,席道瑛;水飽和裂紋對(duì)地殼巖樣中地震波速及各向異性的影響[J];地球物理學(xué)報(bào);1999年05期
相關(guān)博士學(xué)位論文 前2條
1 柴紅保;基于巖體斷裂損傷模型的邊坡穩(wěn)定性研究[D];中南大學(xué);2010年
2 劉曉;汶川地震區(qū)斜坡動(dòng)力反應(yīng)研究[D];中國(guó)地質(zhì)大學(xué);2010年
,本文編號(hào):2066188
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2066188.html