武漢市綠色基礎(chǔ)設(shè)施的連接廊道綠量研究
發(fā)布時(shí)間:2018-06-19 01:17
本文選題:綠量 + 葉面積指數(shù) ; 參考:《華中農(nóng)業(yè)大學(xué)》2013年碩士論文
【摘要】:城市綠地具有改善城市生態(tài)環(huán)境、參與城市物質(zhì)能量循環(huán)與更新等方面具有及其重要的生態(tài)作用。綠色基礎(chǔ)設(shè)施采用對(duì)外土地保護(hù)與對(duì)內(nèi)部開放空間網(wǎng)絡(luò)進(jìn)行鑒定、保護(hù)和長期管理相結(jié)合辦法為城市綠地保護(hù)提出戰(zhàn)略性的保護(hù)對(duì)策。本文引入綠色基礎(chǔ)設(shè)施的概念,對(duì)武漢市的綠色基礎(chǔ)設(shè)施進(jìn)行判定,利用遙感影像提取研究區(qū)域植被信息,并提取綠色基礎(chǔ)設(shè)施連接廊道,對(duì)其進(jìn)行綠量的估算,分析研究區(qū)總體綠量分布,連接廊道網(wǎng)絡(luò)分布及其綠量特征。主要研究內(nèi)容與結(jié)論如下:(1)對(duì)調(diào)查樣方的實(shí)測(cè)群落LAI值與利用ETM遙感影像的提取的植被指數(shù)進(jìn)行回歸分析,得到擬合度較好的RVI與LAI最有擬合回歸方程模型,y=-0.508+2.061 x-0.207x2+0.012x3(R2=0.726)(2)研究區(qū)總體面積約為8588.3km2,綠量總值211.85×108m2綠化覆蓋區(qū)域LAI值為3.547,研究區(qū)內(nèi)單位面積綠量值為2.467。其中農(nóng)田區(qū)域面積4205.937km2,山體、丘陵等其他綠化覆蓋面為1766.94 km2,水域面積總值為1583.06km2,城市建設(shè)用地占地1032.43km2,研究區(qū)內(nèi)農(nóng)田為主要綠量覆蓋區(qū)域。研究區(qū)內(nèi)綠量等級(jí)分布以低綠量區(qū)域占主導(dǎo)地位,整體綠量水平較低。(3)研究區(qū)綠色基礎(chǔ)設(shè)施綠色廊道面積為35.89×108m2,綠量總值為130.64×108m2,LAI均值3.641。分析連接廊道內(nèi)不同組分綠量特征,得到丘陵LAI山體LAI城市綠地LAI農(nóng)田L(fēng)AI濱水綠帶LAI。而連接廊道的各個(gè)綠地類型中以農(nóng)田面積最大,山體其次,然后依次為城市綠地、丘陵和濱水綠帶。(4)比較不同組分類型的綠量等級(jí)特征,比較各類型不同等級(jí)綠量區(qū)域的比例面積和綠量值比例,確定在連接廊道中的5個(gè)綠地類型中,綠量水平較高的是丘陵和山體,農(nóng)田區(qū)域和濱水綠帶內(nèi)的綠量水平處于中下水平,而城市綠地內(nèi)的綠量水平最低。(5)提取典型的廊道20條,對(duì)每一條廊道的LAI均值、最大值、最小值以及不同綠量等級(jí)的LAI值、面積和綠量進(jìn)行分析。1號(hào)東湖-蛇山廊道、2號(hào)府河廊道和9號(hào)青龍山白云洞山體廊道LAI均值較高,綠量水平較好。(6)分析不同圈層的到城市綠色基礎(chǔ)設(shè)施連接廊道分布與城市建設(shè)用地增長呈現(xiàn)相反關(guān)聯(lián),城市三環(huán)內(nèi)綠色廊道面積占市域廊道面積比例為1.16%,三環(huán)至外環(huán)圈層廊道面積占市域廊道面積比例為15.47%,外環(huán)至市域區(qū)域占市域廊道面積比例為83.37%。不同圈層呈現(xiàn)跨越式增加,有外環(huán)至內(nèi)環(huán)隨著城市建設(shè)強(qiáng)度增加,廊道面積和綠量急劇縮減。(7)針對(duì)研究區(qū)域的綠色基礎(chǔ)設(shè)施連接廊道綠量分布和存在的問題提出總體綠量格局的優(yōu)化策略,同時(shí)對(duì)三環(huán)線內(nèi)城市主城區(qū)、三環(huán)線至外環(huán)線城鄉(xiāng)交錯(cuò)帶和外環(huán)至市域的城郊農(nóng)村三大城市發(fā)展區(qū)提出綠量分布優(yōu)化模式。
[Abstract]:Urban green space plays an important ecological role in improving urban ecological environment and participating in urban material and energy cycle and renewal. Green infrastructure uses external land protection and internal open space network identification, protection and long-term management of the combination of measures for the urban green space protection strategic protection countermeasures. In this paper, the concept of green infrastructure is introduced to judge the green infrastructure in Wuhan. The vegetation information is extracted from the remote sensing image, and the green infrastructure is extracted to connect the corridor to estimate the green quantity. The distribution of total green quantity, the distribution of connecting corridor network and the characteristics of green quantity in the study area are analyzed. The main contents and conclusions are as follows: (1) regression analysis was carried out between the measured Lai values of community and the vegetation index extracted from ETM remote sensing images. The best fitting regression equation model was RVI- 0.508 2.061 x-0.207x2 0.012x3r20.26km2) the total area of the study area was about 8588.3km2, the total green value of the green area was 211.85 脳 108m2 was 3.547, and the green value per unit area of the study area was 2.467. The area of farmland is 4205.937km2, the cover of other greening such as mountains and hills is 1766.94 km2, the total area of water area is 1583.06km2, the area of urban construction land is 1032.43km2, and the farmland in the study area is the main green cover area. The distribution of green quantity grade in the study area is dominated by the low green quantity area, and the overall green quantity level is relatively low. The green corridor area of green infrastructure in the study area is 35.89 脳 10 ~ 8m ~ 2, and the total green volume value is 130.64 脳 10 ~ 8m ~ 2 Lai mean 3.641. Based on the analysis of the green quantity characteristics of different components in the connecting corridor, the Lai green zone of the Lai urban green land in the hilly Lai mountain area was obtained in the Lai waterfront green zone of the hilly area. Among the types of green land connected with corridor, farmland is the largest, mountain is the second, followed by urban green space, hilly and waterfront green belt. 4) the green quantity grade characteristics of different components are compared. By comparing the proportion area and green value ratio of different types of green areas with different grades, it was determined that among the five greenbelt types connected with corridors, the higher green volume level was in hills and mountains. The green level in farmland area and waterfront green belt is in the middle and lower level, while the green quantity level in urban green space is the lowest. (5) 20 typical corridors are extracted, and the Lai mean, maximum, minimum value and different green grade Lai value of each corridor are obtained. The area and green quantity were analyzed. The Lai mean value of No. 1 East Lake -Snake Hill Corridor, No. 2 Fu River Corridor and No. 9 Qinglong Mountain Baiyun Dong Mountain Corridor was higher. The green quantity level is better. (6) the distribution of green infrastructure connecting corridor in different circles is inversely related to the urban construction land growth. The proportion of green corridor area to urban corridor area is 1.16, the proportion of green corridor area to outer ring corridor area is 15.47, and the proportion of outer ring to city area is 83.37. The levels of different circles are increasing by leaps and bounds, with the intensity of urban construction increasing from the outer ring to the inner ring. Corridor area and green quantity decrease sharply. 7) aiming at the green distribution and existing problems of green infrastructure connecting corridor in the study area, the optimization strategy of the overall green quantity pattern is put forward. At the same time, the main urban area within the third ring line is also studied. The optimal model of green quantity distribution is put forward in the three urban and rural urban development areas from the third ring line to the outer ring line in the urban-rural interlaced zone and from the outer ring to the city area.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU985.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 鄭鋒先;周春玲;徐和訓(xùn);孔祥安;王豐;;青島市園林綠地綠量研究[J];江西農(nóng)業(yè)學(xué)報(bào);2009年04期
2 武紅敢;“3S”技術(shù)在美國林業(yè)研究中的最新進(jìn)展及其應(yīng)用[J];世界林業(yè)研究;1998年03期
3 高峻,楊名靜,陶康華;上海城市綠地景觀格局的分析研究[J];中國園林;2000年01期
4 韓貴鋒;趙珂;徐建華;;基于時(shí)間序列遙感的長三角地區(qū)植被時(shí)空格局演變[J];中國園林;2009年02期
5 蘇同向;王浩;費(fèi)文軍;;基于綠色基礎(chǔ)設(shè)施理論的城市綠地系統(tǒng)規(guī)劃——以河北省玉田縣為例[J];中國園林;2011年01期
6 周堅(jiān)華;城市生存環(huán)境綠色量值群的研究(5)──綠化三維量及其應(yīng)用研究[J];中國園林;1998年05期
7 黃曉鸞,張國強(qiáng),賈建中;城市生存環(huán)境綠色量值群的研究(6)——城市生存環(huán)境綠色量值群[J];中國園林;1998年06期
相關(guān)碩士學(xué)位論文 前1條
1 葉蕾;基于GIS的城市生態(tài)廊道形態(tài)研究[D];重慶大學(xué);2005年
,本文編號(hào):2037678
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2037678.html
最近更新
教材專著