K型偏心支撐鋼框架在循環(huán)荷載作用下的力學(xué)性能分析
發(fā)布時間:2018-05-19 12:24
本文選題:偏心支撐鋼框架 + 耗能梁段。 參考:《蘭州理工大學(xué)》2013年碩士論文
【摘要】:偏心支撐鋼框架在正常使用階段,具有較大的抗側(cè)力剛度,結(jié)構(gòu)側(cè)移較。辉诖笳鹱饔孟,利用耗能梁段的塑性變形耗散地震能量,具有良好的耗能效果,是一種比較理想的多高層鋼結(jié)構(gòu)抗側(cè)力體系,尤其適用于高烈度震區(qū),K型偏心支撐鋼框架是其中比較常見的一種。研究表明,耗能梁段的長度在1.0Mp|Vp-1.3Mp|Vp圪范圍內(nèi)時,耗能梁段具有最佳的耗能能力,但是好多時候,為了滿足建筑構(gòu)造的要求,要把耗能梁段做得短一些,長度很難在這個范圍。耗能梁段越短,耗能梁段上的剪力就越大,容易使其發(fā)生剪切破壞。根據(jù)耗能梁段發(fā)生剪切破壞的特點(diǎn),在耗能梁段上加了斜加勁肋,以防止過早的剪切破壞。文中設(shè)計了12組耗能梁段長度不同的試件,應(yīng)用有限元軟件ABAQUS分析了加與不加斜加勁肋和斜加勁肋加得多少兩種情況下,框架結(jié)構(gòu)性能的變化。 本文在分析過程中,所有的構(gòu)件都采用了殼單元,對于進(jìn)入彈塑性階段的耗能梁段同時考慮了幾何非線性和材料非線性,其他的構(gòu)件只考慮了幾何非線性,材料的強(qiáng)化采用了混合強(qiáng)化法則,非線性方程通過Newton-Raphson迭代法結(jié)合增量法求解。通過分析得出的主要結(jié)論是:相比在整個耗能梁段上不加斜加勁肋和只在耗能梁段的兩端加斜加勁肋,在整個耗能梁段上加斜加勁肋后,承載力、彈性和彈塑性剛度都提高了,割線剛度退化得慢了,耗能梁段的實(shí)際長度與基本長度Mp|%的比值較小時,框架的彈性位移較大,滯回曲線更飽滿,耗能能力更強(qiáng),但隨著比值接近1或大于1,彈性位移相比較小,耗能能力變差。 因此,當(dāng)耗能梁段的長度與基本長度Mp|Vp名的比值較小時,在整個耗能梁段上加斜加勁肋后,能延遲耗能梁段的破壞,增加結(jié)構(gòu)的耗能能力。
[Abstract]:The eccentrically braced steel frame has large lateral force stiffness and small lateral displacement in normal use. Under the action of large earthquake, the plastic deformation of energy dissipation beam section can dissipate seismic energy, which has a good energy dissipation effect. It is an ideal lateral force resistance system for multi-high-rise steel structures, especially for K-type eccentrically braced steel frames in high intensity seismic areas. The results show that the energy dissipation beam section has the best energy dissipation capacity when the length of the energy dissipation beam section is within the 1.0Mp Vp-1.3Mp VP GE range, but in many cases, in order to meet the requirements of the building construction, the energy dissipation beam segment should be made shorter, and the length is difficult to be in this range. The shorter the energy dissipation section, the greater the shear force on the energy dissipation beam segment, and the shear failure is easy to occur. According to the characteristics of shear failure in the section of energy-dissipating beam, inclined stiffening rib is added to the section of energy-dissipated beam to prevent premature shear failure. In this paper, 12 groups of specimens with different length of energy-consuming beams are designed, and the performance changes of the frame structure are analyzed by using the finite element software ABAQUS under the condition of adding or not adding oblique stiffeners and how many oblique stiffeners are added. In this paper, the shell element is used for all the components in this paper. The geometric nonlinearity and material nonlinearity are considered for the energy dissipation beam in the elastic-plastic stage, while the other members only consider the geometric nonlinearity. The material strengthening is based on the mixed strengthening rule, and the nonlinear equations are solved by the Newton-Raphson iterative method and the incremental method. The main conclusions are as follows: compared with the whole energy dissipation beam section, the bearing capacity, elasticity and elastic-plastic stiffness of the whole energy dissipation beam section are improved after the oblique stiffening rib is added to the whole energy dissipation beam section and the two ends of the energy dissipation beam section are only added with the oblique stiffening rib. The stiffness of the Secant degenerates slowly, the ratio of the actual length to the basic length of the beam section is smaller, the elastic displacement of the frame is larger, the hysteretic curve is fuller, and the energy dissipation ability is stronger. However, when the ratio is close to 1 or greater than 1, the elastic displacement is smaller and the energy dissipation capacity becomes worse. Therefore, when the ratio of the length of the energy dissipation beam segment to the basic length of the energy dissipation beam segment is small, the damage of the energy dissipation beam segment can be delayed and the energy dissipation capacity of the structure can be increased after the oblique stiffening rib is added to the whole energy dissipation beam section.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU391
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 錢稼茹;陳茂盛;張?zhí)焐?王明彈;;偏心支撐鋼框架擬動力地震反應(yīng)試驗(yàn)研究[J];工程抗震;1992年01期
2 王國周;中國鋼結(jié)構(gòu)五十年[J];建筑結(jié)構(gòu);1999年10期
3 崔鴻超;日本兵庫縣南部地震震害綜述[J];建筑結(jié)構(gòu)學(xué)報;1996年01期
4 于安麟;EK形、Y形支撐的抗震性能試驗(yàn)研究[J];西安建筑科技大學(xué)學(xué)報(自然科學(xué)版);1990年03期
相關(guān)博士學(xué)位論文 前1條
1 趙寶成;偏心支撐鋼框架在循環(huán)荷載作用下的破壞機(jī)理及抗震設(shè)計對策[D];西安建筑科技大學(xué);2003年
相關(guān)碩士學(xué)位論文 前2條
1 孟亮;Y型偏心支撐框架循環(huán)荷載下滯回性能研究及設(shè)計建議[D];西安建筑科技大學(xué);2005年
2 莊曉勇;K型偏心支撐鋼框架在循環(huán)荷載作用下的性能研究[D];西安科技大學(xué);2006年
,本文編號:1910086
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1910086.html
最近更新
教材專著