天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于結(jié)構(gòu)組稀疏表示的紅外云圖超分辨率方法

發(fā)布時(shí)間:2017-09-28 01:14

  本文關(guān)鍵詞:基于結(jié)構(gòu)組稀疏表示的紅外云圖超分辨率方法


  更多相關(guān)文章: 超分辨率 紅外云圖 結(jié)構(gòu)組稀疏表示 自相似性


【摘要】:針對(duì)紅外云圖分辨率低、視覺效果較差的問題,提出一種圖像結(jié)構(gòu)組稀疏表示的超分辨率方法。該方法充分利用紅外云圖的結(jié)構(gòu)自相似性,將結(jié)構(gòu)組作為稀疏表示的基本單位,建立圖像結(jié)構(gòu)組稀疏表示模型。在訓(xùn)練字典過程中通過高斯混合模型學(xué)習(xí)圖像結(jié)構(gòu)組的先驗(yàn)信息,再對(duì)樣本塊進(jìn)行聚類,利用主成分分析學(xué)習(xí)得到緊湊的分類字典。在重建階段對(duì)每個(gè)結(jié)構(gòu)組自適應(yīng)選取最匹配的字典,使用改進(jìn)了的加權(quán)l(xiāng)1范數(shù)優(yōu)化方法求解稀疏系數(shù)。實(shí)驗(yàn)結(jié)果表明,與Sc SR、Zeyde、NARM等算法相比,所提算法在視覺效果以及圖像質(zhì)量評(píng)價(jià)指標(biāo)上均有所提高,紅外云圖重構(gòu)質(zhì)量有較為明顯的改善。
【作者單位】: 寧波大學(xué)信息科學(xué)與工程學(xué)院;
【關(guān)鍵詞】超分辨率 紅外云圖 結(jié)構(gòu)組稀疏表示 自相似性
【基金】:國(guó)家自然科學(xué)基金(61271399;61471212) 浙江省自然科學(xué)基金(LY16F010001) 寧波市自然科學(xué)基金(2016A610091)
【分類號(hào)】:TP391.41
【正文快照】: 0引言衛(wèi)星云圖是由氣象衛(wèi)星觀測(cè)得到的顯示地球上的云層覆蓋和陸地表面特征的圖像,是研究天氣系統(tǒng)的重要工具[1]。目前氣象衛(wèi)星主要通過紅外、可見光等不同通道的傳感器對(duì)大氣進(jìn)行觀測(cè)來(lái)獲得不同特性的衛(wèi)星云圖。其中紅外云圖主要取決于目標(biāo)物發(fā)出的輻射,反映云層的溫度分布,

【相似文獻(xiàn)】

中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條

1 李映;張艷寧;許星;;基于信號(hào)稀疏表示的形態(tài)成分分析:進(jìn)展和展望[J];電子學(xué)報(bào);2009年01期

2 趙瑞珍;王飛;羅阿理;張彥霞;;基于稀疏表示的譜線自動(dòng)提取方法[J];光譜學(xué)與光譜分析;2009年07期

3 楊蜀秦;寧紀(jì)鋒;何東健;;基于稀疏表示的大米品種識(shí)別[J];農(nóng)業(yè)工程學(xué)報(bào);2011年03期

4 史加榮;楊威;魏宗田;;基于非負(fù)稀疏表示的人臉識(shí)別[J];計(jì)算機(jī)工程與設(shè)計(jì);2012年05期

5 高志榮;熊承義;笪邦友;;改進(jìn)的基于殘差加權(quán)的稀疏表示人臉識(shí)別[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期

6 朱杰;楊萬(wàn)扣;唐振民;;基于字典學(xué)習(xí)的核稀疏表示人臉識(shí)別方法[J];模式識(shí)別與人工智能;2012年05期

7 耿耀君;張軍英;袁細(xì)國(guó);;一種基于稀疏表示系數(shù)的特征相關(guān)性測(cè)度[J];模式識(shí)別與人工智能;2013年01期

8 張疆勤;廖海斌;李原;;基于因子分析與稀疏表示的多姿態(tài)人臉識(shí)別[J];計(jì)算機(jī)工程與應(yīng)用;2013年05期

9 李正周;王會(huì)改;劉梅;丁浩;金鋼;;基于形態(tài)成分稀疏表示的紅外小弱目標(biāo)檢測(cè)[J];彈箭與制導(dǎo)學(xué)報(bào);2013年04期

10 胡正平;趙淑歡;李靜;;基于塊稀疏遞推殘差分析的稀疏表示遮擋魯棒識(shí)別算法研究[J];模式識(shí)別與人工智能;2014年01期

中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前3條

1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識(shí)別研究[A];虛擬運(yùn)營(yíng)與云計(jì)算——第十八屆全國(guó)青年通信學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2013年

2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標(biāo)識(shí)別[A];2013年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年

3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號(hào)處理及其研究進(jìn)展[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2013年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年

中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條

1 李進(jìn)明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學(xué);2015年

2 王亞寧;基于信號(hào)稀疏表示的電機(jī)故障診斷研究[D];河北工業(yè)大學(xué);2014年

3 姚明海;視頻異常事件檢測(cè)與認(rèn)證方法研究[D];東北師范大學(xué);2015年

4 黃國(guó)華;蛋白質(zhì)翻譯后修飾位點(diǎn)與藥物適應(yīng)癥預(yù)測(cè)方法研究[D];上海大學(xué);2015年

5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復(fù)原與壓縮研究[D];北京工業(yè)大學(xué);2015年

6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學(xué);2015年

7 解虎;高維小樣本陣列自適應(yīng)信號(hào)處理方法研究[D];西安電子科技大學(xué);2015年

8 秦振濤;基于稀疏表示及字典學(xué)習(xí)遙感圖像處理關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2015年

9 薛明;基于稀疏表示的在線目標(biāo)跟蹤研究[D];上海交通大學(xué);2014年

10 孫樂;空譜聯(lián)合先驗(yàn)的高光譜圖像解混與分類方法[D];南京理工大學(xué);2014年

中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條

1 王道文;基于稀疏表示的目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2015年

2 李哲;基于稀疏表示和LS-SVM的心電信號(hào)分類[D];河北大學(xué);2015年

3 孫雪青;Shearlet變換和稀疏表示相結(jié)合的甲狀腺結(jié)節(jié)圖像融合[D];河北大學(xué);2015年

4 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學(xué);2015年

5 趙孝磊;基于圖像分塊稀疏表示的人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年

6 黃志明;基于辨別式稀疏字典學(xué)習(xí)的視覺追蹤算法研究[D];華南理工大學(xué);2015年

7 張鈴華;非約束環(huán)境下的稀疏表示人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年

8 賀妍斐;基于稀疏表示與自適應(yīng)倒易晶胞的遙感圖像復(fù)原方法研究[D];南京信息工程大學(xué);2015年

9 楊爍;電能質(zhì)量擾動(dòng)信號(hào)的稀疏表示/壓縮采樣研究[D];西南交通大學(xué);2015年

10 應(yīng)艷麗;基于低秩稀疏表示的目標(biāo)跟蹤算法研究[D];西南交通大學(xué);2015年



本文編號(hào):932972

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/932972.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7110a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com