RGB-D圖像分類方法研究綜述
本文關(guān)鍵詞:RGB-D圖像分類方法研究綜述
更多相關(guān)文章: 圖像處理 目標(biāo)識別 場景分類 特征提取 Kinect RGB-D圖像
【摘要】:采用新型3D傳感器能夠便捷地同時(shí)獲取多場景、多視覺和多目標(biāo)彩色和深度信息的RGB-D圖像,利用其在物體重疊和遮擋下深度信息對顏色和亮度的不變特點(diǎn),有效提高RGB-D圖像分類的精度。對微軟Kinect設(shè)備的發(fā)展及原理做詳細(xì)介紹;介紹了現(xiàn)有的RGB-D數(shù)據(jù)集;對現(xiàn)有RGB-D圖像特征提取與分類方法進(jìn)行了歸納、分析和比較;闡述RGB-D圖像分類的發(fā)展趨勢。
【作者單位】: 華南農(nóng)業(yè)大學(xué)數(shù)學(xué)與信息學(xué)院;華南農(nóng)業(yè)大學(xué)電子工程學(xué)院;
【關(guān)鍵詞】: 圖像處理 目標(biāo)識別 場景分類 特征提取 Kinect RGB-D圖像
【基金】:廣東省科技計(jì)劃(2015A020209148;2015A020224038;2015A020209124;2016A050502050)
【分類號】:TP391.41
【正文快照】: 1引言RGB圖像分類是計(jì)算機(jī)視覺中重要的基礎(chǔ)問題,已廣泛應(yīng)用于國防和民用的許多領(lǐng)域。但在實(shí)際應(yīng)用中,RGB圖像在目標(biāo)重疊、遮擋、光照變化大、陰影和場景復(fù)雜等情況下,存在目標(biāo)識別率低、場景分類效果不佳及穩(wěn)健性差等問題。為克服這些困難,近幾年利用RGB-D圖像進(jìn)行目標(biāo)識別和
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 陳戲墨,徐紅兵,李志銘,謝鉉洋,李曦,李揚(yáng)彬;數(shù)據(jù)挖掘在醫(yī)學(xué)圖像分類中的應(yīng)用[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2005年01期
2 冀翠萍;孟祥增;;基于內(nèi)容的圖像分類體系[J];電腦知識與技術(shù)(學(xué)術(shù)交流);2007年07期
3 楊杰;陳曉云;;圖像分類方法比較研究[J];微計(jì)算機(jī)應(yīng)用;2007年06期
4 楊文潮;姜志堅(jiān);;圖像分類技術(shù)研究[J];福建電腦;2008年08期
5 葛寒娟;邱桃榮;王劍;盧強(qiáng);李北;劉韜;聶斌;;一種基于相容信息粒原理的圖像分類方法[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
6 王軍;王員云;;粒計(jì)算及其在圖像分類中的應(yīng)用研究[J];計(jì)算機(jī)工程與科學(xué);2009年03期
7 吳軍;王士同;;基于正負(fù)模糊規(guī)則的相結(jié)合的圖像分類[J];計(jì)算機(jī)應(yīng)用;2011年01期
8 吳軍;王士同;趙鑫;;正負(fù)模糊規(guī)則系統(tǒng)、極限學(xué)習(xí)機(jī)與圖像分類[J];中國圖象圖形學(xué)報(bào);2011年08期
9 郝永寬;王威;聶維同;王德強(qiáng);;圖像分類與聚類分析[J];數(shù)字技術(shù)與應(yīng)用;2011年12期
10 蔣玲芳;張偉;司夢;;基于詞袋模型的電子報(bào)圖像分類方法研究[J];信陽師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 鄭海紅;曾平;;一種基于圖像分類的逆半調(diào)算法[A];’2004計(jì)算機(jī)應(yīng)用技術(shù)交流會議論文集[C];2004年
2 文振q;歐陽杰;朱為總;;基于語義特征與支持向量機(jī)的圖像分類[A];中國電子學(xué)會第十六屆信息論學(xué)術(shù)年會論文集[C];2009年
3 王海峰;管亮;;基于顏色特征的圖像分類技術(shù)在油品分析中的應(yīng)用[A];中國儀器儀表學(xué)會第六屆青年學(xué)術(shù)會議論文集[C];2004年
4 陳思坤;吳洪;;基于圖分塊并利用空間金字塔的醫(yī)學(xué)圖像分類[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2010)、第19屆全國多媒體學(xué)術(shù)會議(NCMT2010)、第6屆全國人機(jī)交互學(xué)術(shù)會議(CHCI2010)、第5屆全國普適計(jì)算學(xué)術(shù)會議(PCC2010)論文集[C];2010年
5 張淑雅;趙曉宇;趙一鳴;李均利;;基于SVM的圖像分類[A];第十三屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2006年
6 李博;韓萍;;基于壓縮感知和SVM的極化SAR圖像分類[A];第二十七屆中國(天津)2013IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會議論文集[C];2013年
7 朱松豪;胡娟娟;孫偉;;基于非歐空間高階統(tǒng)計(jì)的圖像分類方法[A];第25屆中國控制與決策會議論文集[C];2013年
8 潘海為;李建中;張煒;;基于像素聚類的腦部醫(yī)學(xué)圖像分類[A];第二十屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報(bào)告篇)[C];2003年
9 吳霜;張一飛;修非;王大玲;鮑玉斌;于戈;;基于興趣點(diǎn)特征提取的醫(yī)學(xué)圖像分類[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報(bào)告篇)[C];2007年
10 武進(jìn);尹愷;王長明;張家才;;SVDM在蔬菜病害圖像分類中的應(yīng)用[A];圖像圖形技術(shù)與應(yīng)用進(jìn)展——第三屆圖像圖形技術(shù)與應(yīng)用學(xué)術(shù)會議論文集[C];2008年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 胡堯;基于低秩矩陣估計(jì)的機(jī)器學(xué)習(xí)算法分析[D];浙江大學(xué);2015年
2 李昌英(Ri ChangYong);基于上下文信息的語義圖像分類研究[D];浙江大學(xué);2014年
3 陳博;基于集成學(xué)習(xí)和特征選擇的極化SAR地物分類[D];西安電子科技大學(xué);2015年
4 王曉東;基于稀疏特征學(xué)習(xí)的復(fù)雜圖像分類[D];西安電子科技大學(xué);2014年
5 顧迎節(jié);面向圖像分類的主動學(xué)習(xí)算法研究[D];南京理工大學(xué);2015年
6 趙鑫;圖像分類中的判別性增強(qiáng)研究[D];中國科學(xué)技術(shù)大學(xué);2013年
7 楊冰;基于藝術(shù)風(fēng)格的繪畫圖像分類研究[D];浙江大學(xué);2013年
8 丁建睿;基于多示例學(xué)習(xí)的淺表器官超聲圖像分類方法研究[D];哈爾濱工業(yè)大學(xué);2012年
9 賈世杰;基于內(nèi)容的商品圖像分類方法研究[D];大連理工大學(xué);2013年
10 李曉旭;基于概率主題模型的圖像分類和標(biāo)注的研究[D];北京郵電大學(xué);2012年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 張明靜;基于改進(jìn)遺傳算法的分塊綜合特征加權(quán)圖像分類研究[D];華南理工大學(xué);2015年
2 李函怡;融合主動學(xué)習(xí)的半監(jiān)督技術(shù)在圖像分類中的應(yīng)用研究[D];西南大學(xué);2015年
3 王亞鳳;基于多特征的主動學(xué)習(xí)方法在圖像分類中的應(yīng)用研究[D];河北工程大學(xué);2015年
4 陳榮安;基于改進(jìn)的Bag-of-Features模型的圖像分類研究[D];蘭州大學(xué);2015年
5 鐘畏丹;基于HSV和紋理特征的圖像分類[D];華中師范大學(xué);2015年
6 焦陽;基于主動學(xué)習(xí)的多標(biāo)簽圖像分類方法研究[D];蘇州大學(xué);2015年
7 王騰川;基于主動學(xué)習(xí)的SAR圖像分類方法研究[D];上海交通大學(xué);2015年
8 NGUYEN QUANG KHANH;基于極化SAR目標(biāo)信息提取與SVM分類[D];哈爾濱工業(yè)大學(xué);2015年
9 王朔琛;基于半監(jiān)督支持向量機(jī)的圖像分類方法研究[D];陜西師范大學(xué);2015年
10 楊東坡;基于深度學(xué)習(xí)的商品圖像分類[D];大連交通大學(xué);2015年
,本文編號:819472
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/819472.html