非負(fù)譜稀疏表示的高光譜成像中的異常檢測(cè)
本文關(guān)鍵詞:非負(fù)譜稀疏表示的高光譜成像中的異常檢測(cè)
更多相關(guān)文章: 異常檢測(cè) 非負(fù)稀疏表示 協(xié)作表示 高光譜圖像
【摘要】:針對(duì)高光譜異常檢測(cè)提出了一種新型的非負(fù)稀疏表示(NSR)模型。其核心思想是背景像素可以近似地表示為其周圍鄰域的稀疏線性組合,而異常像素不能。算法中稀疏向量的非負(fù)性和一對(duì)一約束具有物理意義以及更好的辨別能力。為了排除在背景字典中呈現(xiàn)的潛在異常像素,修剪與中心像素類似的原子,然后通過非負(fù)正交匹配追蹤(NOMP)算法求解NSR模型,并將重建誤差直接用于確定異常像素。最后,通過實(shí)際的高光譜數(shù)據(jù)集的實(shí)驗(yàn)結(jié)果與現(xiàn)有的算法進(jìn)行比較,證明了所提出的算法的有效性。
【作者單位】: 空軍工程大學(xué)防空反導(dǎo)學(xué)院;
【關(guān)鍵詞】: 異常檢測(cè) 非負(fù)稀疏表示 協(xié)作表示 高光譜圖像
【基金】:國家自然科學(xué)基金(61603410)
【分類號(hào)】:TP391.41
【正文快照】: 0引言目標(biāo)檢測(cè)和異常檢測(cè)(AD)是高光譜圖像(HSI)的兩個(gè)重要應(yīng)用。HSI提供了關(guān)于不同對(duì)象的光譜和空間分布的豐富信息,允許更復(fù)雜的光譜空間模型用于更準(zhǔn)確地檢測(cè)目標(biāo)。與目標(biāo)檢測(cè)不同,沒有關(guān)于目標(biāo)的頻譜的先驗(yàn)信息可用于異常檢測(cè)。因此,異常被檢測(cè)為其光譜特征明顯不同于其空
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 李映;張艷寧;許星;;基于信號(hào)稀疏表示的形態(tài)成分分析:進(jìn)展和展望[J];電子學(xué)報(bào);2009年01期
2 趙瑞珍;王飛;羅阿理;張彥霞;;基于稀疏表示的譜線自動(dòng)提取方法[J];光譜學(xué)與光譜分析;2009年07期
3 楊蜀秦;寧紀(jì)鋒;何東健;;基于稀疏表示的大米品種識(shí)別[J];農(nóng)業(yè)工程學(xué)報(bào);2011年03期
4 史加榮;楊威;魏宗田;;基于非負(fù)稀疏表示的人臉識(shí)別[J];計(jì)算機(jī)工程與設(shè)計(jì);2012年05期
5 高志榮;熊承義;笪邦友;;改進(jìn)的基于殘差加權(quán)的稀疏表示人臉識(shí)別[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
6 朱杰;楊萬扣;唐振民;;基于字典學(xué)習(xí)的核稀疏表示人臉識(shí)別方法[J];模式識(shí)別與人工智能;2012年05期
7 耿耀君;張軍英;袁細(xì)國;;一種基于稀疏表示系數(shù)的特征相關(guān)性測(cè)度[J];模式識(shí)別與人工智能;2013年01期
8 張疆勤;廖海斌;李原;;基于因子分析與稀疏表示的多姿態(tài)人臉識(shí)別[J];計(jì)算機(jī)工程與應(yīng)用;2013年05期
9 李正周;王會(huì)改;劉梅;丁浩;金鋼;;基于形態(tài)成分稀疏表示的紅外小弱目標(biāo)檢測(cè)[J];彈箭與制導(dǎo)學(xué)報(bào);2013年04期
10 胡正平;趙淑歡;李靜;;基于塊稀疏遞推殘差分析的稀疏表示遮擋魯棒識(shí)別算法研究[J];模式識(shí)別與人工智能;2014年01期
中國重要會(huì)議論文全文數(shù)據(jù)庫 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識(shí)別研究[A];虛擬運(yùn)營與云計(jì)算——第十八屆全國青年通信學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標(biāo)識(shí)別[A];2013年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號(hào)處理及其研究進(jìn)展[A];中國聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2013年全國水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 李進(jìn)明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學(xué);2015年
2 王亞寧;基于信號(hào)稀疏表示的電機(jī)故障診斷研究[D];河北工業(yè)大學(xué);2014年
3 姚明海;視頻異常事件檢測(cè)與認(rèn)證方法研究[D];東北師范大學(xué);2015年
4 黃國華;蛋白質(zhì)翻譯后修飾位點(diǎn)與藥物適應(yīng)癥預(yù)測(cè)方法研究[D];上海大學(xué);2015年
5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復(fù)原與壓縮研究[D];北京工業(yè)大學(xué);2015年
6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學(xué);2015年
7 解虎;高維小樣本陣列自適應(yīng)信號(hào)處理方法研究[D];西安電子科技大學(xué);2015年
8 秦振濤;基于稀疏表示及字典學(xué)習(xí)遙感圖像處理關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2015年
9 薛明;基于稀疏表示的在線目標(biāo)跟蹤研究[D];上海交通大學(xué);2014年
10 孫樂;空譜聯(lián)合先驗(yàn)的高光譜圖像解混與分類方法[D];南京理工大學(xué);2014年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 王道文;基于稀疏表示的目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2015年
2 李哲;基于稀疏表示和LS-SVM的心電信號(hào)分類[D];河北大學(xué);2015年
3 孫雪青;Shearlet變換和稀疏表示相結(jié)合的甲狀腺結(jié)節(jié)圖像融合[D];河北大學(xué);2015年
4 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學(xué);2015年
5 趙孝磊;基于圖像分塊稀疏表示的人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年
6 黃志明;基于辨別式稀疏字典學(xué)習(xí)的視覺追蹤算法研究[D];華南理工大學(xué);2015年
7 張鈴華;非約束環(huán)境下的稀疏表示人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年
8 賀妍斐;基于稀疏表示與自適應(yīng)倒易晶胞的遙感圖像復(fù)原方法研究[D];南京信息工程大學(xué);2015年
9 楊爍;電能質(zhì)量擾動(dòng)信號(hào)的稀疏表示/壓縮采樣研究[D];西南交通大學(xué);2015年
10 應(yīng)艷麗;基于低秩稀疏表示的目標(biāo)跟蹤算法研究[D];西南交通大學(xué);2015年
,本文編號(hào):768940
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/768940.html