基于云計(jì)算環(huán)境的大數(shù)據(jù)分析應(yīng)用系統(tǒng)文獻(xiàn)調(diào)研
[Abstract]:In the twenty-first century, many IT companies and organizations decided to adopt cloud computing and big data technologies. Big data has become a very important innovation and growth point in IT, such as the wide application of cloud computing, Internet of Things and data analytics. Big data analytics (BDA) can help the department better understand the data contained in the information, and also help to identify the data, and the most important is to find the value that exists in the data. For the enterprise market, there are a large number of examples that demonstrate the value of big data analytics, such as Facebook, the Amazon and Google, have begun to use big data as part of their primary marketing plan to better serve customers. When analyzing data, BDA typically uses software tools that are dedicated to predictive analysis, application data mining, text mining, prediction, and data optimization, all of which require technical support for cloud computing. In the past two decades, cloud computing is an efficient service-oriented computing platform. The relationship between cloud computing and big data is the provision of storage and computing platforms for large data items by cloud computing. The systematic literature investigation (SLR) has been widely concerned by software engineering researchers in 2004. Many researchers have reported that they have applied systematic literature research in different fields of research in software engineering for empirical software research. In order to get an in-depth understanding, software engineering practitioners will make systematic evaluation as a new research method for software engineering. They believe that systematic literature investigation is a systematic literature review method using evidence-based knowledge system. As a systematic review, systematic literature research is considered to be a key research methodology in the field of evidence-based software engineering research. After extensive attention has been paid to systematic literature research, researchers in software engineering have used systematic literature research in many different studies, such as agile software development, regression testing, process modeling, variability management, cost estimation, and the like. The researchers also summarized the best practices for systematic literature research and their experience in the use of systematic literature research in published papers. In addition, the technical strategy assessment and quality report of systematic literature investigation are also put forward in the study. With the increasing interest of software engineering researchers in systematic literature research, systematic literature research must provide appropriate methodology to guide its design, implementation and reporting of high-quality system evaluation. The purpose of this study is to systematically study the existing big data and cloud computing technology, and summarize the research trend of the technology, mainly introduce the related technology and related software of the big data and cloud technology and the research method. In order to investigate and analyze the results, this study adopted the method of reviewing the system of the evidence-based software engineering paradigm. This paper presents a study on the systematic literature research (SLR) of cloud technology and big data analysis. Based on the predefined search strategy,717 articles were evaluated and identified, including 57 important relevant literature, and the selected 57 articles were published between 2010 and 2016. The paper defines a review process, through the development of a review agreement, and the results of the review. This study first presents a study and attempts to answer these questions through a review and analysis of the 57 articles, 5W + 1H analysis (what-what, where-where, when-when, when-responsible, why-why, how-how). The results of the study will be provided to the researchers, the software project, and the software engineer for more information about the existing methods of the existing big data analysis cloud computing. We are focusing on how to integrate big data and cloud computing into a development framework. In addition, this paper gives a summary of the big data analysis of cloud computing. It is found that the deployment of large data on the cloud platform is faced with some problems and challenges to be solved, such as data security and privacy protection. Although some of the investigators have proposed some methods of response, this systematic literature survey found that this study is still at an early stage and therefore requires further in-depth study. This paper also gives a series of paper lists of big data and business intelligence, and summarizes and gives a table.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 得州;;挖出不一樣的秘密 數(shù)據(jù)分析師[J];電腦愛(ài)好者;2010年13期
2 張文霖;;數(shù)據(jù)分析初體驗(yàn)[J];數(shù)據(jù);2013年05期
3 古福;;讓大數(shù)據(jù)分析更快速、更簡(jiǎn)化[J];互聯(lián)網(wǎng)周刊;2013年11期
4 于宗民;;數(shù)據(jù)分析應(yīng)用的最大障礙[J];中國(guó)金融電腦;2007年08期
5 魏巍巍;;論數(shù)據(jù)分析在企業(yè)經(jīng)營(yíng)管理中的重要性[J];產(chǎn)業(yè)與科技論壇;2012年12期
6 張文霖;;數(shù)據(jù)分析六步曲[J];數(shù)據(jù);2013年06期
7 戴未琰;;大數(shù)據(jù)分析概要[J];物聯(lián)網(wǎng)技術(shù);2013年08期
8 王海蘊(yùn);;大數(shù)據(jù)分析 市場(chǎng)成倍增長(zhǎng) 深耕空間巨大[J];財(cái)經(jīng)界;2013年10期
9 ;大數(shù)據(jù)分析系列3:大數(shù)據(jù)分析如何權(quán)衡存儲(chǔ)[J];電腦與電信;2013年10期
10 馬_";;對(duì)大數(shù)據(jù)分析相關(guān)問(wèn)題的思考[J];信息通信技術(shù);2013年06期
相關(guān)會(huì)議論文 前10條
1 申敏;;數(shù)據(jù)分析的原則和一般方法[A];2010年云南電力技術(shù)論壇論文集(文摘部分)[C];2010年
2 劉剛;;小學(xué)生數(shù)據(jù)分析觀念的培養(yǎng)[A];中華教育理論與實(shí)踐科研論文成果選編(第五卷)[C];2013年
3 石勇;;在銀行和金融數(shù)據(jù)分析中的評(píng)分方法[A];Data Analysis, Econo-physics and Risk Management--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
4 吳一平;;基于數(shù)據(jù)分析的離校工作改進(jìn)[A];中國(guó)高等教育學(xué)會(huì)教育信息化分會(huì)第十二次學(xué)術(shù)年會(huì)論文集[C];2014年
5 呂大青;;送變電施工企業(yè)中數(shù)據(jù)分析的運(yùn)用[A];第二屆浙江中西部科技論壇論文集(第一卷)[C];2005年
6 李小花;李姝;;大數(shù)據(jù)分析在指揮信息系統(tǒng)中的應(yīng)用[A];2014第二屆中國(guó)指揮控制大會(huì)論文集(下)[C];2014年
7 范麗偉;唐煥文;唐一源;;空間獨(dú)立成分分析在fMRⅠ數(shù)據(jù)分析中的應(yīng)用[A];第九次全國(guó)生物物理大會(huì)學(xué)術(shù)會(huì)議論文摘要集[C];2002年
8 張軍;李婕;;中國(guó)國(guó)民休閑狀態(tài)變化研究——基于網(wǎng)上數(shù)據(jù)分析[A];第十五屆全國(guó)區(qū)域旅游學(xué)術(shù)開(kāi)發(fā)研討會(huì)暨度假旅游論壇論文冊(cè)[C];2010年
9 徐小龍;王汝傳;姜波;;一種新的基于P2P的電信海量數(shù)據(jù)分析業(yè)務(wù)模式[A];普適計(jì)算及其軟件新技術(shù)——第三屆長(zhǎng)三角計(jì)算機(jī)科技論壇文集[C];2006年
10 邵東華;;高速公路的平面控制復(fù)測(cè)與數(shù)據(jù)分析[A];第四屆“測(cè)繪科學(xué)前沿技術(shù)論壇”論文精選[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 匿銘;數(shù)據(jù)分析的“磨刀階段”[N];中華讀書報(bào);2013年
2 胡英;澳發(fā)布政府可信數(shù)據(jù)分析指導(dǎo)草案[N];人民郵電;2014年
3 鄭愛(ài)民;陜西加強(qiáng)消費(fèi)維權(quán)數(shù)據(jù)分析利用[N];中國(guó)工商報(bào);2014年
4 本報(bào)駐美國(guó)記者 吳成良;“數(shù)據(jù)分析”成了“金飯碗”[N];人民日?qǐng)?bào);2014年
5 本報(bào)記者 楊群;大數(shù)據(jù)分析亮出專家的“自貿(mào)研判”[N];解放日?qǐng)?bào);2014年
6 周桂生 湯建國(guó);數(shù)據(jù)分析行業(yè)登陸湖南,帶來(lái)巨大商機(jī)[N];中國(guó)企業(yè)報(bào);2008年
7 朱文明 甫瀚公司咨詢專家;數(shù)據(jù)分析提升決策智慧[N];中國(guó)審計(jì)報(bào);2009年
8 ;國(guó)采中心空調(diào)協(xié)議供貨數(shù)據(jù)分析[N];政府采購(gòu)信息報(bào);2010年
9 武虹 審計(jì)署駐沈陽(yáng)特派辦;以數(shù)據(jù)分析為統(tǒng)領(lǐng)開(kāi)展數(shù)字化審計(jì)工作[N];中國(guó)審計(jì)報(bào);2012年
10 杰弗尼;行走在大數(shù)據(jù)分析誤區(qū)旁的零售商[N];中國(guó)商報(bào);2013年
相關(guān)博士學(xué)位論文 前7條
1 劉岳;區(qū)域地球化學(xué)數(shù)據(jù)分析及成礦信息融合模型研究[D];中國(guó)地質(zhì)大學(xué);2015年
2 徐曉琳;面向大規(guī)模數(shù)據(jù)分析與分類的正則化回歸算法[D];安徽大學(xué);2017年
3 董媛香;基于軟集合的不完備不一致數(shù)據(jù)分析及決策方法研究[D];重慶大學(xué);2014年
4 張睿;數(shù)據(jù)分析在污染控制領(lǐng)域的節(jié)能優(yōu)化應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
5 陳宜治;函數(shù)型數(shù)據(jù)分析若干方法及應(yīng)用[D];浙江工商大學(xué);2011年
6 郭廣報(bào);基于并行統(tǒng)計(jì)計(jì)算的金融數(shù)據(jù)分析[D];山東大學(xué);2012年
7 孫建強(qiáng);生物磁共振數(shù)據(jù)分析中的幾個(gè)問(wèn)題[D];中國(guó)科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2014年
相關(guān)碩士學(xué)位論文 前10條
1 周儒軍;基于Hadoop的分布式監(jiān)控平臺(tái)的研究與實(shí)現(xiàn)[D];華南理工大學(xué);2015年
2 施建輝;中職生職業(yè)道德認(rèn)識(shí)現(xiàn)狀調(diào)查研究[D];上海師范大學(xué);2015年
3 丁國(guó)輝;核磁共振數(shù)據(jù)分析中的兩個(gè)問(wèn)題[D];中國(guó)科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2015年
4 張清;面向精準(zhǔn)廣告投放的數(shù)據(jù)分析與可視化系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];山東大學(xué);2015年
5 周徐;基于分層采樣的DeepWeb數(shù)據(jù)分析方法研究[D];蘇州大學(xué);2015年
6 王佳琦;糾正性反饋對(duì)高中生英語(yǔ)冠詞習(xí)得的影響[D];內(nèi)蒙古師范大學(xué);2015年
7 顧星竹;基于Hadoop的PCF系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];南京大學(xué);2014年
8 張海洋;大數(shù)據(jù)的統(tǒng)計(jì)分析技術(shù)比較研究[D];南京大學(xué);2014年
9 扎娟娟;銀保通管理系統(tǒng)的構(gòu)建與實(shí)施[D];電子科技大學(xué);2014年
10 姜佳健;云環(huán)境下基于B/S結(jié)構(gòu)的血管數(shù)據(jù)分析[D];東南大學(xué);2015年
,本文編號(hào):2512134
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2512134.html