基于SIFT特征檢測與匹配的快速圖像拼接方法研究
[Abstract]:With the rapid development of computer technology, human's quality requirements for images are also rising. Because of its wide viewing angle, the image stitching technology has been a hot topic in the field of computer vision, and is widely used in all fields of real life, including virtual reality, remote sensing image, video monitoring and aerial photography of unmanned aerial vehicle. Image splicing technology refers to the contradiction that two or more partial overlapping image sequences are aligned by space matching, and fused and spliced into a wide-angle and high-resolution image containing all the image sequence information, so as to solve the contradiction that the image field and resolution cannot be met at the same time. Although there are many experts and scholars to improve the image stitching method, the current image splicing technology still has the problems of high computational complexity and slow splicing speed, and therefore the real-time application of the image splicing method is limited. This paper mainly focuses on how to speed up the research on the speed of image stitching. This paper first introduces the research background, significance of the image stitching technology and the current research situation at home and abroad. Then, the correlation theory and SIFT (Scale Invariant Feature Transform) feature point detection method of the image stitching technology are introduced in detail. By reading a large number of relevant Chinese and foreign literature and analyzing the characteristics and particularity of the image stitching process, three methods of accelerating the image stitching speed are proposed in this paper, which are the fast image stitching method based on the SIFT feature vector diagram, The invention relates to a fast SIFT image splicing method for local characteristic of an image and a quick SIFT image splicing method combined with projection error correction. In view of the problem of too many SIFT feature points and complex matching process, a fast image stitching method based on the SIFT feature vector diagram is proposed. The method comprises the following steps of: firstly, combining a phase correlation algorithm, determining an overlapping area of an image to be spliced, and defining a SIFT feature point detection range; then taking into account the spatial position information of the feature point, constructing an SIFT feature vector image so as to limit the search range of the matching point when the feature matches, And the matching point pair is quickly obtained. The experimental results show that the method can reduce the large amount of unnecessary searching under the premise of ensuring the image splicing quality, and improve the image splicing speed. Aiming at the problem that the SIFT feature point dimension is high and the calculation complexity of the feature point detection process is high, a quick SIFT splicing method of the local feature self-adaptation of the image is proposed. The method comprises the following steps of: firstly, segmenting the spliced image, and determining a characteristic type of an image local block; and then, detecting the characteristic points of each local block by adopting different simplified methods. Then, the transformation matrix is obtained by the feature matching, and the pseudo-matching pair is removed by combining the RANSAC algorithm. And finally, the final spliced image is obtained by image fusion. It can be seen from the experimental results that the method can effectively improve the efficiency of image stitching and solve the problem of high computational complexity in image stitching. This paper analyzes the characteristics and particularity of the image stitching process, and proposes a fast SIFT image stitching method combined with projection error correction. First, the method characteristic detection range is only concentrated in a partial image block in the overlapped area of the image to be spliced, and the SIFT feature point information is obtained from the partial image block. Then, the projection error correction method is applied after the feature matching, so that the purpose of calculating the high-precision projection transformation matrix by fully utilizing the limited matching point is achieved, and the unnecessary feature detection and matching search are avoided, and then the image splicing speed is greatly accelerated. In the end, the quality analysis of the image mosaic is made based on the quality evaluation method of image stitching to reflect the performance of the improved method. The experimental results show that the method significantly reduces the time of the splicing process compared with the current fast image splicing method, and the splicing result has good visual effect, and the feasibility and the effectiveness of the method are proved.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 方賢勇,潘志庚,徐丹;圖像拼接的改進算法[J];計算機輔助設(shè)計與圖形學學報;2003年11期
2 何紅太,王秀美,全茜;刑事犯罪現(xiàn)場的圖像拼接設(shè)計與實現(xiàn)[J];計算機工程與科學;2004年12期
3 張顯全;唐振軍;盧江濤;;基于線匹配的圖像拼接[J];計算機科學;2005年01期
4 孫瀚,黃大貴;基于十字形區(qū)域搜索法的圖像拼接方法[J];計量與測試技術(shù);2005年01期
5 李波;一種基于小波和區(qū)域的圖像拼接方法[J];電子科技;2005年04期
6 陳世哲;胡濤;劉國棟;謝凱;劉炳國;浦昭邦;;基于光柵的快速精確圖像拼接[J];光學精密工程;2006年02期
7 王靖;高雷;;圖像拼接的檢測[J];計算機安全;2006年07期
8 王長纓;周明全;;一種基于局部金字塔分解的圖像拼接[J];西北大學學報(自然科學版);2006年03期
9 馮桂蘭;田維堅;屈有山;張宏建;葛偉;;嵌入式高速DSP在視頻圖像拼接系統(tǒng)的應(yīng)用[J];彈箭與制導學報;2006年S8期
10 田瑞娟;;圖像拼接融合技術(shù)在網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)中的應(yīng)用探究[J];兵工自動化;2009年03期
相關(guān)會議論文 前10條
1 田宏亮;王俊妮;岳鵬;;一種基于邊界閾值的圖像拼接融合算法[A];2013年(第五屆)西部光子學學術(shù)會議論文集[C];2013年
2 鄭金鑫;杜軍平;;基于Levenberg-Marquardt算法的圖像拼接研究[A];2009年中國智能自動化會議論文集(第三分冊)[C];2009年
3 易端陽;唐萬有;郝健強;;印品檢測中相似測度算法在圖像拼接中的對比研究[A];顏色科學與技術(shù)——2012第二屆中國印刷與包裝學術(shù)會議論文摘要集[C];2012年
4 謝凌霄;張茂軍;王云麗;高輝;;基于特征匹配的無縫圖像拼接方法[A];第十四屆全國信號處理學術(shù)年會(CCSP-2009)論文集[C];2009年
5 高冠東;賈克斌;肖珂;;一種新的基于特征點匹配的圖像拼接方法[A];第十三屆全國圖象圖形學學術(shù)會議論文集[C];2006年
6 胡社教;陳宗海;劉年慶;;基于圖像灰度特征的全景圖像拼接[A];'2003系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)交流會論文集[C];2003年
7 馮桂蘭;田維堅;張薇;鮑峗;張宏建;;基于DSP的圖像拼接系統(tǒng)研究[A];中國光學學會2006年學術(shù)大會論文摘要集[C];2006年
8 賴力;周代全;黎川;王新;;Innova4100血管機下肢靜脈跟蹤造影中的圖像拼接[A];2010中華醫(yī)學會影像技術(shù)分會第十八次全國學術(shù)大會論文集[C];2010年
9 李騁進;;DR全下肢圖像拼接成像技術(shù)的臨床應(yīng)用[A];2010中華醫(yī)學會影像技術(shù)分會第十八次全國學術(shù)大會論文集[C];2010年
10 周劍軍;歐陽寧;陳旭;黃先鋒;;一種基于Harris特征點的圖像拼接方法[A];全國第二屆信號處理與應(yīng)用學術(shù)會議專刊[C];2008年
相關(guān)重要報紙文章 前2條
1 山東 貓咪老爸;圖像拼接 天衣無縫[N];電腦報;2003年
2 本報記者 劉霞;放飛想象的翅膀(二)[N];科技日報;2014年
相關(guān)博士學位論文 前10條
1 賈銀江;無人機遙感圖像拼接關(guān)鍵技術(shù)研究[D];東北農(nóng)業(yè)大學;2016年
2 高健華;時空聯(lián)合調(diào)制型傅里葉變換紅外成像光譜儀光譜復原與圖像拼接研究[D];中國科學院長春光學精密機械與物理研究所;2017年
3 張樺;場景圖像拼接關(guān)鍵技術(shù)研究[D];天津大學;2008年
4 邵向鑫;數(shù)字圖像拼接核心算法研究[D];吉林大學;2010年
5 姜代紅;煤礦監(jiān)控圖像拼接與識別的方法研究[D];中國礦業(yè)大學;2015年
6 曾巒;基于不變特征的圖像拼接及軟同步直寫硬盤記錄技術(shù)研究[D];哈爾濱工業(yè)大學;2012年
7 馮桂蘭;車載夜視導航系統(tǒng)的研究[D];中國科學院研究生院(西安光學精密機械研究所);2007年
8 李新娥;大視場多光譜相機圖像拼接與融合技術(shù)研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2015年
9 朱云芳;基于圖像拼接的視頻編輯[D];浙江大學;2006年
10 張德新;面陣航偵CCD相機系統(tǒng)設(shè)計及其圖像拼接技術(shù)研究[D];哈爾濱工業(yè)大學;2010年
相關(guān)碩士學位論文 前10條
1 陳澤武;FPC光學缺陷檢測平臺中的關(guān)鍵圖像處理技術(shù)[D];華南理工大學;2015年
2 殷娟娟;基于SIFT特征的巖石圖像拼接研究[D];西安石油大學;2015年
3 岳昕;基于SIFT的全景圖像拼接方法研究[D];昆明理工大學;2015年
4 徐忠洋;航拍圖像拼接算法的研究與實現(xiàn)[D];遼寧大學;2015年
5 吳金津;改進的SIFT算法及其在圖像拼接中的應(yīng)用[D];湖南工業(yè)大學;2015年
6 王鵬程;基于DSP的視頻拼接技術(shù)的研究[D];湖南工業(yè)大學;2015年
7 宋佳乾;視頻圖像拼接優(yōu)化算法實現(xiàn)研究[D];寧夏大學;2015年
8 王瑞霞;基于SIFT配準算法的全景圖像拼接系統(tǒng)的FPGA實現(xiàn)[D];南京理工大學;2015年
9 王迪;多傳感器圖像拼接、融合與系統(tǒng)實現(xiàn)[D];南京理工大學;2015年
10 高琦;攝影測量系統(tǒng)中基于SIFT算法的柱面全景圖像拼接實現(xiàn)[D];華中師范大學;2015年
,本文編號:2506927
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2506927.html