基于大數(shù)據(jù)的高考志愿數(shù)據(jù)分析關(guān)鍵技術(shù)研究
[Abstract]:With the popularity of the online voluntary filling system for college entrance examination, the enrollment management unit has mastered a large number of candidates to fill in the data. However, due to the lack of an efficient analysis platform, these data can not be used effectively. With the emergence of big data technology, this problem can be solved. Under this background, this paper makes an in-depth study on the popular Hadoop distributed processing platform, and carries out a series of research work around the analysis of the voluntary filling data of the college entrance examination. The main research contents and innovations are as follows: (1) the architecture and principle of distributed processing platform are analyzed and studied, and the architecture of Hadoop distributed processing platform is described, and the Hadoop file system is analyzed. The structure and design idea of MapReduce computing model. (2) according to the basic process of big data processing, combined with the characteristics of college entrance examination voluntary filling data, and on the basis of drawing lessons from Hadoop design pattern, a core control node is designed. A distributed data processing model composed of data preprocessing node, computing node and monitoring node is proposed and implemented to meet the needs of voluntary data analysis of college entrance examination. (3) A task scheduling algorithm based on genetic algorithm is proposed and implemented. The execution time and cost of the task are taken into account to reduce the task consumption time and save the operation cost. The experimental results show that compared with the FIFO scheduling algorithm used in Hadoop platform, the total task response time and task execution cost of this algorithm are significantly reduced. (4) an improved cooperative filtering voluntary recommendation algorithm for college entrance examination is proposed. The parallelization of the algorithm is realized. The experimental results show that the algorithm can provide accurate voluntary recommendation for college entrance examination candidates. By comparing the execution efficiency of serial algorithm and parallel algorithm, the running efficiency of the algorithm under different number of nodes is verified.
【學(xué)位授予單位】:長春理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:G637;TP311.13
【參考文獻】
相關(guān)期刊論文 前10條
1 陳騫;;韓國發(fā)展大數(shù)據(jù)的計劃與行動[J];上海信息化;2015年10期
2 ;國務(wù)院關(guān)于印發(fā)促進大數(shù)據(jù)發(fā)展行動綱要的通知[J];中華人民共和國國務(wù)院公報;2015年26期
3 郭嘉凱;;大數(shù)據(jù)戰(zhàn)略[J];軟件和集成電路;2015年08期
4 廖建新;;大數(shù)據(jù)技術(shù)的應(yīng)用現(xiàn)狀與展望[J];電信科學(xué);2015年07期
5 徐蘭靜;李珊;嚴(yán)釗;;基于協(xié)同過濾的高考志愿推薦系統(tǒng)[J];計算機系統(tǒng)應(yīng)用;2015年07期
6 李學(xué)龍;龔海剛;;大數(shù)據(jù)系統(tǒng)綜述[J];中國科學(xué):信息科學(xué);2015年01期
7 李彬;;大數(shù)據(jù)背景下日本信息產(chǎn)業(yè)發(fā)展成效與問題[J];東北亞學(xué)刊;2015年01期
8 閆建;高華麗;;發(fā)達(dá)國家大數(shù)據(jù)發(fā)展戰(zhàn)略的啟示[J];理論探索;2015年01期
9 冷亞軍;陸青;梁昌勇;;協(xié)同過濾推薦技術(shù)綜述[J];模式識別與人工智能;2014年08期
10 張引;陳敏;廖小飛;;大數(shù)據(jù)應(yīng)用的現(xiàn)狀與展望[J];計算機研究與發(fā)展;2013年S2期
相關(guān)博士學(xué)位論文 前1條
1 林文輝;基于Hadoop的海量網(wǎng)絡(luò)數(shù)據(jù)處理平臺的關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 張永芳;基于Hadoop平臺的并行數(shù)據(jù)挖掘算法研究[D];安徽理工大學(xué);2016年
2 汲磊舉;大數(shù)據(jù)環(huán)境下動車組故障關(guān)聯(lián)關(guān)系分析關(guān)鍵技術(shù)研究與實現(xiàn)[D];北京交通大學(xué);2016年
3 陳敏偉;大數(shù)據(jù)技術(shù)在鐵路貨運電子商務(wù)系統(tǒng)中的基本應(yīng)用研究[D];西南交通大學(xué);2015年
4 黨永亮;大數(shù)據(jù)分析在移動通信網(wǎng)絡(luò)優(yōu)化中的應(yīng)用研究[D];華中師范大學(xué);2015年
5 郭凱振;基于Hadoop的分布式計算系統(tǒng)的設(shè)計與實現(xiàn)[D];大連海事大學(xué);2015年
6 王淑芬;基于大數(shù)據(jù)的制造運行監(jiān)測與分析平臺研究[D];廣東工業(yè)大學(xué);2014年
7 李步源;基于云計算的協(xié)同過濾算法并行化研究[D];鄭州大學(xué);2013年
8 趙莎;分布式海量數(shù)據(jù)處理系統(tǒng)計算節(jié)點的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2012年
9 楊浩杰;高考志愿填報的數(shù)據(jù)分析研究[D];河南大學(xué);2011年
10 殷員分;高考考生志愿數(shù)據(jù)分析與挖掘研究[D];西南大學(xué);2010年
,本文編號:2495155
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2495155.html