基于眾包UGC的交通用戶分類推薦模型
[Abstract]:In the last 10 years of the WEB 2.0 era, the number of Internet netizens with geometric multiples and the new network interaction with the development of science and technology have enabled a large number of information to be generated and disseminated in many Internet platforms. As a "rising star" in the era of WEB 2.0 platform, Intelligent Transportation Information platform still relies on large-scale deployment of sensors and other hardware, as the main way to collect traffic information. Inevitably, the limitation of relying on equipment to collect data is exposed, and the waste of massive UGC data existing on the platform is caused. In view of this background and the research status at home and abroad, this paper proposes a traffic user classification and recommendation model based on crowdsourcing UGC. Based on the model, this paper mainly studies the following three aspects. 1. The relationship between traffic user behavior characteristics and crowdsourcing UGC, and the related research of user attributes reflected by this relationship. Research on discriminant criteria and related algorithms of traffic user classification recommendation model dependence. 3. Simulation of intelligent transportation information platform based on information generation. In this paper, the intelligent traffic information platform based on Cartesian coordinate system is used as the simulation foundation, combined with the platform characteristics of WEB 2.0 era, the characteristics of crowdsourcing UGC, the characteristics of user behavior and so on. With the help of quality control strategy and Shapley power index in cooperative game, graph theory related knowledge, shortest path algorithm, dynamic programming algorithm of route matching, word segmentation tool and so on, the crowdsourcing UGC is combined with the recommended scheme of user classification. The validity and feasibility of the model in traffic information platform are verified by the data. The results of the traffic user classification recommendation model based on crowdsourcing UGC provide users with relatively real-time traffic information recommendation, friend recommendation and so on, which is convenient for users to obtain the information they really care about, and achieves "taking it from users." Use it for users. And this is the ultimate significance of this topic.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【參考文獻】
相關(guān)期刊論文 前10條
1 李正熙;;中國城市智能交通系統(tǒng)產(chǎn)業(yè)化發(fā)展趨勢[J];自動化博覽;2015年07期
2 馬春艷;崔鵬;金明日;;基于二維地圖的連通路徑快速查找算法[J];無線互聯(lián)科技;2014年10期
3 李萍;;淺談國外智能交通系統(tǒng)的應(yīng)用和發(fā)展趨勢[J];吉林交通科技;2014年03期
4 榮輝桂;火生旭;胡春華;莫進俠;;基于用戶相似度的協(xié)同過濾推薦算法[J];通信學(xué)報;2014年02期
5 張志強;逄居升;謝曉芹;周永;;眾包質(zhì)量控制策略及評估算法研究[J];計算機學(xué)報;2013年08期
6 陸悠;華澤;盛浩;奚雪峰;;基于用戶及其行為社會屬性的信任測度模型[J];計算機科學(xué);2013年01期
7 劉宇軒;郭玉翠;;基于Shapley熵的主觀信任模型[J];計算機應(yīng)用研究;2012年12期
8 張利斌;鐘復(fù)平;涂慧;;眾包問題研究綜述[J];科技進步與對策;2012年06期
9 薛明;劉春;肖學(xué)年;;基于WebGIS的復(fù)雜城市交通網(wǎng)絡(luò)信息服務(wù)[J];測繪通報;2011年12期
10 王峰博;崔先國;丁琳;原建順;;基于Dijkstra算法駕車導(dǎo)航路徑研究與實現(xiàn)[J];中國西部科技;2011年34期
相關(guān)會議論文 前3條
1 向少華;李文江;高原;王川;王楓;;深圳市云計算產(chǎn)學(xué)研聯(lián)盟現(xiàn)狀及發(fā)展淺析[A];第九屆中國科技政策與管理學(xué)術(shù)年會論文集[C];2013年
2 聶轟;陳湘濤;;一種基于歐氏距離加權(quán)的連通聚類算法[A];2008'中國信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(二)[C];2008年
3 吳建平;蔣冰蕾;王渤;;英國智能交通發(fā)展現(xiàn)狀與趨勢[A];2007第三屆中國智能交通年會論文集[C];2007年
相關(guān)碩士學(xué)位論文 前2條
1 杜雷;垂直搜索引擎網(wǎng)絡(luò)爬蟲的研究與設(shè)計[D];北京郵電大學(xué);2015年
2 陳尚衛(wèi);基于用戶信任度的網(wǎng)絡(luò)動態(tài)訪問控制研究[D];南京航空航天大學(xué);2010年
,本文編號:2493903
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2493903.html