基于部分先驗識別的B-Rep模型全局對稱性識別方法
發(fā)布時間:2019-06-05 11:58
【摘要】:B-Rep模型對稱性識別能有效地提高CAE分析效率.針對現(xiàn)有方法通過識別B-Rep模型所有局部對稱性來確定全局對稱性,效率較低的問題,提出一種基于部分先驗識別的B-Rep模型全局對稱性識別方法.該方法以一致面集為對稱性識別單元,首先利用先驗知識快速確定部分局部對稱性,然后通過幾何推理逐步縮小候選對稱性識別范圍,最終快速確定B-Rep模型全局對稱性.實驗結(jié)果證明,文中方法魯棒性高且識別速度快.
[Abstract]:Symmetry recognition of B-Rep model can effectively improve the efficiency of CAE analysis. In order to solve the problem that the existing methods determine the global symmetry by identifying all the local symmetries of B-Rep model, a global symmetry recognition method of B-Rep model based on partial priori recognition is proposed. In this method, the uniform surface set is used as the symmetry recognition unit. Firstly, the partial local symmetry is determined quickly by using prior knowledge, and then the candidate symmetry recognition range is gradually reduced by geometric reasoning, and finally the global symmetry of B-Rep model is determined quickly. The experimental results show that the proposed method has high robustness and fast recognition speed.
【作者單位】: 河海大學(xué)物聯(lián)網(wǎng)工程學(xué)院;常州市圖形圖像與骨科植入物數(shù)字化技術(shù)重點(diǎn)實驗室;
【基金】:國家自然科學(xué)基金青年項目(61403120);國家自然科學(xué)基金面上項目(61472118) 江蘇省科技支撐計劃(BE2014048)
【分類號】:TP391.72
,
本文編號:2493510
[Abstract]:Symmetry recognition of B-Rep model can effectively improve the efficiency of CAE analysis. In order to solve the problem that the existing methods determine the global symmetry by identifying all the local symmetries of B-Rep model, a global symmetry recognition method of B-Rep model based on partial priori recognition is proposed. In this method, the uniform surface set is used as the symmetry recognition unit. Firstly, the partial local symmetry is determined quickly by using prior knowledge, and then the candidate symmetry recognition range is gradually reduced by geometric reasoning, and finally the global symmetry of B-Rep model is determined quickly. The experimental results show that the proposed method has high robustness and fast recognition speed.
【作者單位】: 河海大學(xué)物聯(lián)網(wǎng)工程學(xué)院;常州市圖形圖像與骨科植入物數(shù)字化技術(shù)重點(diǎn)實驗室;
【基金】:國家自然科學(xué)基金青年項目(61403120);國家自然科學(xué)基金面上項目(61472118) 江蘇省科技支撐計劃(BE2014048)
【分類號】:TP391.72
,
本文編號:2493510
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2493510.html
最近更新
教材專著