基于圖像分割和模式識別的鋼材斷口圖像分析方法研究
[Abstract]:Drop hammer tear test (DropWeightTearTest, drop hammer tear test) is a test of falling hammer breaking of prefabricated notched materials. The shear percentage of fracture surface is calculated to evaluate the toughness of the material. At present, it mainly depends on artificial visual judgment of the area percentage of toughness zone, subjective factors affect the accuracy, detection efficiency is low, there is an urgent need for automatic testing instruments. However, the image mode of the fracture surface of the falling hammer tear specimen is very complex: the ductile zone, the brittle zone is mixed, and the height fluctuation can reach 30mm, which brings great technical challenge to the automatic discrimination of imaging and lighting, especially the image. In this paper, through the in-depth study of falling hammer tear fracture characteristics and machine vision technology, an evaluation method based on image segmentation and pattern classification is proposed, the fracture image acquisition platform is built, and the detection software is developed. The related experiments are carried out to verify the whole detection system. Firstly, combined with the optical reflection characteristics and three-dimensional characteristics of the fracture surface, the overall design of the fracture image analysis system is solved, and then the image preprocessing is carried out by using threshold segmentation, mean filtering, image fusion and other algorithms. Image segmentation is carried out for different fracture types of images. The digital image features of the segmented region are extracted to train the Gao Si hybrid model and the support vector machine classifier, and a suitable image classification model is obtained. Finally, the fracture region recognition and classification of the fracture image is realized. The evaluation results of the algorithm are compared with those of human experts. The experimental results show that the absolute error between the automatic evaluation algorithm designed in this paper and the evaluation results of human experts is less than 4%. The automatic evaluation of the tear fracture of the drop hammer can be realized.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 方健;劉國棟;張建偉;徐惟誠;周立富;;機(jī)器視覺技術(shù)在評定DWTT試樣斷口中的應(yīng)用[J];理化檢驗(yàn)(物理分冊);2015年04期
2 吳一全;孟天亮;吳詩Zs;;圖像閾值分割方法研究進(jìn)展20年(1994—2014)[J];數(shù)據(jù)采集與處理;2015年01期
3 許紅玉;蔡坦坦;葉良凱;李夢卓;張夢雪;孟偉麗;胡晶晶;;分水嶺算法在CT圖像分割中的應(yīng)用[J];中國醫(yī)學(xué)物理學(xué)雜志;2014年06期
4 王晶;盧愛鳳;杜鵑;蒲江;張婷;;管線鋼落錘撕裂性能評定影響因素[J];萊鋼科技;2014年05期
5 王馨;王軍生;趙紅陽;王靖震;;管線鋼落錘撕裂實(shí)驗(yàn)斷口的圖像分割分析[J];遼寧科技大學(xué)學(xué)報(bào);2013年06期
6 伊力哈木·亞爾買買提;;基于改進(jìn)的自適應(yīng)分水嶺圖像分割方法研究[J];計(jì)算機(jī)仿真;2013年02期
7 王博;;一種快速均值濾波算法[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2012年10期
8 張榮建;張志強(qiáng);祖述勛;;鋼管混凝土拱橋安全性評價(jià)的SVM機(jī)器模型[J];混凝土;2011年11期
9 張野;楊建林;;基于KNN和SVM的中文文本自動(dòng)分類研究[J];情報(bào)科學(xué);2011年09期
10 張鳳晶;程紅;孫文邦;;基于小波變換的圖像融合方法研究[J];影像技術(shù);2010年06期
相關(guān)博士學(xué)位論文 前2條
1 陳雪峰;圖像高斯混合模型的判別學(xué)習(xí)方法[D];北京理工大學(xué);2009年
2 李蓓蓓;三維織物仿真的研究[D];東華大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 張凱;基于圖像熵的直線電機(jī)動(dòng)子位置測量方法研究[D];安徽大學(xué);2016年
2 邱藤;基于高斯混合模型的EM算法及其應(yīng)用研究[D];電子科技大學(xué);2015年
3 陳怡蘭;釬焊用鋁硅、鋁硅銅合金藥芯焊絲的研究[D];北京工業(yè)大學(xué);2014年
4 歐W毥,
本文編號:2487909
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2487909.html