商業(yè)銀行基于CRM系統(tǒng)的數(shù)據(jù)分析研究
[Abstract]:After the reform and opening up, China's economy is developing rapidly, and the market competition is becoming more and more fierce. The focus of competition is also constantly changing, from the previous product competition to customer-centered service competition. The relationship between enterprises and customers is the focus of customer-centered service competition. As a service industry to provide all kinds of financial services to the masses, customer relationship management is particularly important to commercial banks. In big data era, customer information data with explosive trend of growth, in the face of unprecedented huge amount of data, only through deeper mining can fully reflect its potential value. Therefore, it is necessary for commercial banks to carry out big data analysis on the customer relationship management system. Through deep mining and comprehensive analysis of these customer information, commercial banks can really understand the personalized behavior and needs of customers. The value of different customers to the bank is different. The work of this paper is to analyze the development road of commercial banks under the background of big data's era, taking customer information data as the database. Establish big data customer relationship management system for commercial banks, and mainly introduce the customer classification in customer relationship management system. MapReduce clustering big data processing method was used to successfully classify customers. I am engaged in the financial industry, in the commercial bank responsible for the management of high-end customers. In the changing environment, the needs of customers are also constantly changing: from the basic deposit and loan, settlement business to the current wealth management, wealth preservation, inheritance planning. How to deeply understand the customers, discover the needs of the customers, so as to provide personalized customized products and services, how to use data analysis, obtain the target value customers to achieve accurate marketing, improve management efficiency; These are topics worthy of our study and discussion.
【學(xué)位授予單位】:江西財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡興;;湖北農(nóng)村商業(yè)銀行競爭力分析[J];時(shí)代農(nóng)機(jī);2016年01期
2 谷艷華;雷玉瓊;;基于Merton期權(quán)定價(jià)模型的存款保險(xiǎn)定價(jià)研究[J];金融經(jīng)濟(jì);2015年24期
3 蘇桂福;;城市商業(yè)銀行現(xiàn)狀分析及轉(zhuǎn)型之路[J];時(shí)代金融;2014年18期
4 耿小茹;;淺議互聯(lián)網(wǎng)金融沖擊下的銀行發(fā)展對策[J];現(xiàn)代企業(yè)教育;2014年04期
5 呂曉丹;范宏;;基于決策樹的信用評價(jià)模型及實(shí)證研究[J];市場周刊(理論研究);2013年08期
6 王樹喬;王惠;;淮安農(nóng)村商業(yè)銀行應(yīng)用電子支付系統(tǒng)分析[J];農(nóng)業(yè)網(wǎng)絡(luò)信息;2013年06期
7 楊巧婷;;我國電子銀行發(fā)展趨勢分析[J];現(xiàn)代商業(yè);2013年12期
8 秦湘斌;陳燕燕;許青松;;基于分類回歸樹的個(gè)人信用客觀評分指標(biāo)體系(英文)[J];數(shù)學(xué)理論與應(yīng)用;2013年01期
9 劉孟飛;張曉嵐;張超;;我國商業(yè)銀行業(yè)務(wù)多元化、經(jīng)營績效與風(fēng)險(xiǎn)相關(guān)性研究[J];國際金融研究;2012年08期
10 金玲玲;朱元倩;巴曙松;;利率市場化對商業(yè)銀行影響的國際經(jīng)驗(yàn)及啟示[J];農(nóng)村金融研究;2012年01期
相關(guān)碩士學(xué)位論文 前1條
1 張功臣;商業(yè)銀行中間業(yè)務(wù)發(fā)展的障礙分析及對策[D];山東大學(xué);2007年
,本文編號(hào):2480563
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2480563.html