基于斷層輪廓成像的三維模型重構(gòu)理論和試驗研究
[Abstract]:With the continuous and rapid development of manufacturing industry, the traditional forward engineering has been difficult to meet the needs of people. Reverse engineering is more and more widely used in the development and design of new products. Reverse engineering can not only greatly shorten the development and design cycle of new products, but also greatly reduce the cost of R & D. In reverse engineering, obtaining the 3D geometric data of the target object quickly and accurately is a very important step, but for the parts with complex inner cavity contour, the measurement method of data is limited accordingly. Considering the accuracy and cost of measurement, this paper presents a method of 3D model reconstruction based on fault contour imaging for data acquisition, which integrates CCD camera with NC machining center by connecting parts. Installed with high resolution lens and LED ring light source, and equipped with removable shading barrel, will be wrapped in embedded body and fixed on the machine tool workbench measured workpiece, using numerical control machining center for high-precision layer-by-layer cutting imaging. The contour image of the fault is obtained. Then the image pre-processing, edge detection and sub-pixel subdivision are carried out to obtain the 3D point cloud data, and then the 3D point cloud data is simplified, segmented and triangulated. Finally, the three-dimensional reconstruction model of the measured object is obtained by curve and surface fitting. The research contents of this paper are as follows: (1) the experimental research of CCD to obtain the image of fault contour by building a test platform, after pre-processing the tested parts, according to the working parameters of the test equipment to select the appropriate shooting conditions for the data acquisition test, Through the comparison and analysis of the experimental results, the best shooting conditions are determined to obtain high-quality tomography images. On the basis of determining the shooting conditions, a complete 3-D model reconstruction experiment of image acquisition is carried out. In this paper, a total of 2490 slices of slice contour images are collected. (2) pre-processing and edge detection techniques of images are firstly studied according to the original data collected, namely smoothing denoising, gray-level averaging and median filtering. Then by studying the existing edge detection algorithms canny algorithm and log algorithm an improved canny algorithm is proposed which improves the edge detection accuracy to a certain extent. Finally, the sub-pixel subdivision algorithm is used to further improve the edge detection accuracy. Compared with the pixel-level edge detection accuracy, the sub-pixel subdivision algorithm improves the accuracy by 50%. (3) the point cloud data processing is studied. Including point cloud data simplification, point cloud data segmentation and point cloud data triangulation and so on. Firstly, point cloud data reduction methods, such as uniform sampling method, besieged box method and grid-based method, are studied. A curvature-based point cloud reduction algorithm is adopted in this paper, and the feasibility of this algorithm is verified by an example. Finally, the mesh triangulation algorithm is studied and a new triangulation algorithm for point cloud data is proposed. (4) the surface fitting is studied by surface fitting and 3D reconstruction, including the theoretical basis of surface fitting. Nurbs surface fitting and surface stitching. By using imageware,ug software, three different methods of reconstruction based on characteristic curve, superimposed contour fitting and nurbs surface fitting are used to fit the surface of the processed 3D point cloud, and the three-dimensional reconstruction model of the tested part is obtained, which is based on the feature curve reconstruction, the contour superposition fitting reconstruction and the nurbs surface fitting reconstruction. The reconstruction accuracy of nurbs surface fitting reconstruction is the highest by analyzing the reconstruction error. Finally, from three aspects of data acquisition, edge detection accuracy and surface reconstruction accuracy, a centralized feasible scheme to improve the reconstruction accuracy is proposed.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 顏強,吳國雄,孫家駟;數(shù)字地面模型的曲面擬合建模方法[J];重慶交通學(xué)院學(xué)報;2002年01期
2 王澤;張峻霞;張蕓蕓;;基于三角基曲面擬合后視鏡的數(shù)學(xué)建模與仿真[J];天津科技大學(xué)學(xué)報;2009年05期
3 喬雨婷;韓飛;李文科;李凱揚;;曲面擬合技術(shù)在醫(yī)學(xué)熱層析方法中的應(yīng)用[J];計算機應(yīng)用與軟件;2013年02期
4 彭芳瑜,周云飛,周濟;基于插值與逼近的復(fù)雜曲面擬合[J];工程圖學(xué)學(xué)報;2002年04期
5 郭偉青,吳小剛,李際軍;逆向工程中基于精確截面信息的曲面擬合[J];計算機應(yīng)用研究;2005年12期
6 王衛(wèi)華,李昆;曲面擬合技術(shù)在汽車后視鏡理論建模中的應(yīng)用[J];武漢理工大學(xué)學(xué)報;2005年11期
7 王瑞胡;;基于多尺度曲面擬合的細胞圖像表面分割算法[J];計算機工程與設(shè)計;2009年17期
8 汪俊南;侯占利;;單幅圖像的景深曲面擬合算法[J];現(xiàn)代計算機(專業(yè)版);2014年01期
9 白曉亮,張樹生,劉軍;曲面擬合過程中的參數(shù)值優(yōu)化方法[J];工程圖學(xué)學(xué)報;2004年04期
10 朱暌;喻擎蒼;蘇斌;;基于曲面擬合的結(jié)構(gòu)光測量點提取方法研究[J];計算機工程與設(shè)計;2009年10期
相關(guān)會議論文 前3條
1 肖菁;王琰;平西建;邵美珍;;Bezier曲面和Nurbs曲面擬合在三維足跡表面重建中的應(yīng)用[A];中國圖象圖形科學(xué)技術(shù)新進展——第九屆全國圖象圖形科技大會論文集[C];1998年
2 李明峰;陳春暉;談俊忠;;基于VC++的移動曲面擬合等高線生成算法研究[A];第四屆海峽兩岸GIS發(fā)展研討會暨中國GIS協(xié)會第十屆年會論文集[C];2006年
3 何平安;楊燕思;范若;;基于曲面擬合相關(guān)法的十字絲目標(biāo)中心定位算法研究[A];第十八屆十三省市光學(xué)學(xué)術(shù)會議論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 張帆;圖像處理中曲線曲面擬合問題研究[D];山東大學(xué);2015年
相關(guān)碩士學(xué)位論文 前9條
1 李坤;基于B樣條曲面擬合和Snake模型的Mura缺陷檢測方法研究[D];電子科技大學(xué);2014年
2 李廣年;復(fù)雜曲面擬合與誤差分析研究[D];吉林大學(xué);2016年
3 王麗萍;點云數(shù)據(jù)曲線曲面擬合的研究[D];山東大學(xué);2008年
4 殷國偉;機載三維激光成像系統(tǒng)地面點提取與曲面擬合算法研究[D];中國海洋大學(xué);2010年
5 陳濤;逆向工程中數(shù)據(jù)分塊和規(guī)則曲面擬合算法的研究[D];南京航空航天大學(xué);2004年
6 郭瑩瑩;基于邊緣特性的帶約束曲面擬合的圖像放大[D];山東大學(xué);2013年
7 周瑩;基于激光跟蹤測量系統(tǒng)的研究及其在管片檢測中的應(yīng)用[D];同濟大學(xué);2007年
8 劉俊;移動最小二乘散點曲線曲面擬合與插值的研究[D];浙江大學(xué);2011年
9 萬林生;曲線和曲面擬合的改良縮張算法[D];揚州大學(xué);2007年
,本文編號:2451086
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2451086.html