陶瓷零件缺陷的在線視覺檢測系統(tǒng)
[Abstract]:Ceramics are indispensable materials for life and production. The defects of ceramics will seriously affect the quality of ceramics. Because of the small volume of ceramic torus and square ceramic tubes, large batches of ceramic tubes have brought great difficulty in testing in the process of production. The traditional detection of ceramic parts depends on artificial eye detection. The detection efficiency is low, the stability is poor, and it is easy to appear the phenomenon of false detection and missed detection. In recent years, non-destructive testing methods based on acoustic and optoelectronic have attracted much attention in ceramic defect detection. In this paper, the method of machine vision is adopted to detect the defects of ceramic torus or square ceramic tubes, and an on-line visual inspection method of ceramic parts defects is discussed. The main contents are as follows: 1) the design of on-line inspection system. It mainly includes: image acquisition unit, motion control unit, image processing unit, human-computer interaction unit, etc., through the combination of mechanical, motor, optical, machine vision and other related theoretical knowledge and practical application, The machine vision inspection system of ceramic parts defects is designed and realized, which can detect the defects of ceramic rings and square ceramic tubes. 2) the detection algorithm of ceramic rings is studied, and the method of Hough transformation is used to detect the circular ceramics. According to the geometric characteristics of the circle, the circular center coordinates can be obtained by two one-dimensional scanning of the image by using the projection method, and the radius can be solved according to the Hough transform. 3) the detection algorithm of the square ceramic tube is studied. The detection method of square ceramic tube is studied by using projection method, the effective region is used to obtain the square ceramic tube in the image, and the inclination of square ceramic tube is adjusted by weighting the center of gravity of the square ceramic tube. The square ceramic tube is divided into several blocks by local block, and the characteristics of each block are judged to detect the defects. The experimental results show that the method of Hough transform is convenient to detect concentric circle, and the three-dimensional accumulation of parameters in Hough transform can be converted into one-dimensional accumulation, thus reducing the time-consuming of the algorithm. The projection method is used to simplify the detection process of the square ceramic tube and to ensure the correct detection rate at the same time. The experimental data show that the defect detection algorithm of ceramic parts takes 83 Ms and can meet the requirement of 10Hz detection speed of ceramic ring parts.
【學位授予單位】:長沙理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TQ174.66;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 吳曉敏;耿春明;;基于機器視覺的酒液異物智能檢測方法研究[J];機械工程與自動化;2016年01期
2 苑瑋琦;李德健;李紹麗;;雪糕棒輪廓質(zhì)量視覺在線檢測方法[J];計算機應用研究;2016年10期
3 楊小明;胡文軍;樓俊鋼;蔣云良;;局部分塊的一類支持向量數(shù)據(jù)描述[J];計算機應用;2015年04期
4 鄭波;高峰;;基于S-PSO分類算法的故障診斷方法[J];航空學報;2015年11期
5 劉奇;林崗;;基于Visual Studio 2010的UG二次開發(fā)研究[J];自動化技術(shù)與應用;2015年01期
6 余旺盛;田孝華;侯志強;查宇飛;;基于局部分塊學習的在線視覺跟蹤[J];電子學報;2015年01期
7 王鋒;殷珍珍;李彬;;基于分塊局部二值模式的圖像檢索研究[J];微電子學與計算機;2014年05期
8 劉麗;蘇賦;田芳;盧阿娟;;基于Matlab的圖像感興趣區(qū)域提取[J];現(xiàn)代電子技術(shù);2013年08期
9 羅小剛;汪德暖;侯長軍;霍丹群;易彬;;Radon變換與功率譜結(jié)合的PSA圖像傾斜度自動校正算法[J];傳感技術(shù)學報;2011年09期
10 尚璐;李銳;宋信玉;;改進的Hough變換圓檢測算法[J];電子設(shè)計工程;2011年14期
相關(guān)博士學位論文 前2條
1 陳再良;圖像感興趣區(qū)域提取方法研究[D];中南大學;2012年
2 高貴;SAR圖像目標ROI自動獲取技術(shù)研究[D];國防科學技術(shù)大學;2007年
相關(guān)碩士學位論文 前7條
1 王盼盼;基于FCM的感興趣區(qū)域提取算法[D];華南理工大學;2013年
2 楊杰;基于機器視覺的瓶口缺陷檢測算法研究及系統(tǒng)開發(fā)[D];廣東工業(yè)大學;2012年
3 吳衛(wèi);基于機器視覺的機械零件檢測與識別系統(tǒng)設(shè)計[D];東華大學;2011年
4 時長闊;面向機器視覺的數(shù)字化LED光源控制器[D];華南理工大學;2010年
5 王義坤;陶瓷磨削加工表面損傷數(shù)字圖像檢測關(guān)鍵技術(shù)研究[D];天津大學;2009年
6 程應科;工程陶瓷磨削表面損傷圖像檢測技術(shù)研究[D];天津大學;2007年
7 王風梅;基于機器視覺的小件陶瓷管檢測系統(tǒng)的研究[D];西安科技大學;2004年
,本文編號:2437883
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2437883.html