化工突發(fā)事件信息抽取方法的研究
[Abstract]:Nowadays, the frequent occurrence of chemical emergencies has caused great loss and influence to people's production and life and the development of our country. Therefore, it is very important to supervise chemical emergencies effectively. News reports are one of the main sources for people to understand chemical emergencies. By extracting a large number of news reports, we can get the relevant information, that is, the time, place, type, chemical involved of the accident, that is, the time when the accident occurred, the location of the accident, the type of accident, and the chemical involved. The cause of the accident, the result of the accident, the information about the aftermath of the accident, which can help decision makers quickly and comprehensively grasp the problems exposed by every chemical accident, and make scientific decisions for them. Accurate prevention to achieve effective regulation provides data support. In order to extract the above information effectively and apply it to the management of chemical emergency information, this paper has done the following work: 1. By collecting, sorting and reading a large number of news reports on chemical emergencies, this paper analyzes the characteristics of the information that needs to be extracted from the news reports, and constructs a pattern rule base for each type of information by using the method of pattern matching. A corresponding extraction algorithm is developed for the information to be extracted, and then the information of chemical emergencies is extracted. 2. 2. In this paper, two machine learning algorithms, maximum Entropy dependent Syntax Analysis and TextRank keyword extraction, are used to automatically generate new rule patterns according to users' evaluation of information extraction results, thus self-learning of accident information extraction rules is realized. It broadens the pattern rule base and improves the accuracy of the next information extraction. 3. 3. Based on the above algorithm and the business requirements of Sinopec Institute of Safety Engineering, this paper designs and develops a chemical emergency information extraction system, which realizes the extraction of chemical emergency information and the automatic generation of pattern rules. Through user feedback and a large number of experiments, it is shown that this information extraction method has a high accuracy and the effect of extraction is more ideal.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.1
【參考文獻】
相關(guān)期刊論文 前10條
1 李志紅;;石油化工企業(yè)安全事故原因分析及對策研究[J];石油化工安全環(huán)保技術(shù);2013年06期
2 夏天;;詞語位置加權(quán)TextRank的關(guān)鍵詞抽取研究[J];現(xiàn)代圖書情報技術(shù);2013年09期
3 李淼;杜明晶;苗放;;網(wǎng)頁設(shè)計中Bootstrap CSS框架的應(yīng)用與拓展[J];電子技術(shù)與軟件工程;2013年17期
4 宋子輝;;自然語言理解的中文地址匹配算法[J];遙感學(xué)報;2013年04期
5 孫波;劉丹;;基于MySQL的嵌入式移動數(shù)據(jù)庫系統(tǒng)研究[J];河南機電高等專科學(xué)校學(xué)報;2012年03期
6 仲秋雁;郭艷敏;王寧;薛慧芳;崔麗;王延章;;基于知識元的非常規(guī)突發(fā)事件情景模型研究[J];情報科學(xué);2012年01期
7 奉國和;鄭偉;;國內(nèi)中文自動分詞技術(shù)研究綜述[J];圖書情報工作;2011年02期
8 蔣德良;;基于規(guī)則匹配的突發(fā)事件結(jié)果信息抽取研究[J];計算機工程與設(shè)計;2010年14期
9 孔芳;周國棟;朱巧明;錢培德;;指代消解綜述[J];計算機工程;2010年08期
10 辛霄;范士喜;王軒;王曉龍;;基于最大熵的依存句法分析[J];中文信息學(xué)報;2009年02期
相關(guān)博士學(xué)位論文 前2條
1 譚紅葉;中文事件抽取關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2008年
2 楊爾弘;突發(fā)事件信息提取研究[D];北京語言大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 吳平博;基于事件框架的主題相關(guān)文檔智能檢索的初步研究[D];清華大學(xué);2004年
,本文編號:2424919
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2424919.html