天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

社會學(xué)習(xí)網(wǎng)絡(luò)的分類方法研究與設(shè)計

發(fā)布時間:2019-01-26 18:52
【摘要】:隨著互聯(lián)網(wǎng)技術(shù)的發(fā)展,當(dāng)今社會早已進入信息爆炸的時代,人們?nèi)找嬖鲩L的知識需求也已經(jīng)超出傳統(tǒng)教育模式所能滿足的范圍。如何在信息世界里充分利用信息資源,營造個性化學(xué)習(xí)環(huán)境,滿足人們隨時隨地學(xué)習(xí)的需求,成了當(dāng)務(wù)之急。社會學(xué)習(xí)網(wǎng)絡(luò)是基于Web2.0技術(shù)和大數(shù)據(jù)挖掘技術(shù)所構(gòu)建的用于知識發(fā)掘、整合、存儲以及傳播的網(wǎng)絡(luò),能夠根據(jù)用戶信息提供個性化學(xué)習(xí)方案,并通過文本、語音、視頻等人機交互方式將知識提供給用戶,滿足人們隨時隨地學(xué)習(xí)的需求。社會學(xué)習(xí)網(wǎng)絡(luò)雖然能夠滿足人們在信息爆炸時代的學(xué)習(xí)需求,但是由于仍處于發(fā)展初期,其智能決策機制還遠(yuǎn)不夠完善。論文基于移動互聯(lián)網(wǎng)和大數(shù)據(jù)挖掘技術(shù)的發(fā)展,研究分類方法在社會學(xué)習(xí)網(wǎng)絡(luò)中的設(shè)計與應(yīng)用,主要研究工作和創(chuàng)新點包括以下方面:1)為了獲取真實可靠的研究數(shù)據(jù),論文首先設(shè)計開發(fā)了一個在線社會學(xué)習(xí)互聯(lián)網(wǎng)平臺。與其他在線學(xué)習(xí)平臺不同,該平臺不僅提供了課程討論、教學(xué)視頻播放等學(xué)習(xí)功能,還提供信息引導(dǎo)、校園互動等社交功能,為社會學(xué)習(xí)網(wǎng)絡(luò)的平臺設(shè)計與實現(xiàn)提供了參考方案。作為分類方法研究的平臺基礎(chǔ),該平臺實現(xiàn)了社會學(xué)習(xí)網(wǎng)絡(luò)的數(shù)據(jù)采集功能。2)社會學(xué)習(xí)網(wǎng)絡(luò)的課程討論區(qū)用于用戶之間的交流,但目前存在著信息泛濫、雜亂的現(xiàn)象,給用戶帶來極大的不便。針對這一問題,論文利用數(shù)據(jù)挖掘技術(shù),提出了一種課程討論區(qū)信息分類與排序方法,幫助用戶快速獲取有用信息。與單門課程分類方法不同,論文利用n門課程的主題信息組成數(shù)據(jù)源,將二元不平衡分類問題轉(zhuǎn)換成n+l元平衡分類問題,從而提高課程主題分類與排序的準(zhǔn)確性。實驗結(jié)果驗證了所提主題分類與排序算法的有效性,完善了社會學(xué)習(xí)網(wǎng)絡(luò)的智能機制。3)社會學(xué)習(xí)網(wǎng)絡(luò)保存了大量的用戶視頻點擊信息,但這些信息都沒有得到利用,造成極大的信息浪費。針對這一問題,論文提出了一種基于視頻點擊流數(shù)據(jù)的用戶分類方法,利用用戶點擊行為來識別用戶本身的學(xué)習(xí)程度。與其他視頻點擊行為研究不同,論文基于在線學(xué)習(xí)互聯(lián)網(wǎng)平臺改進用戶點擊事件設(shè)計,建立新的用戶點擊模型,并將用戶點擊行為與學(xué)習(xí)程度聯(lián)系起來。實驗結(jié)果驗證了所提視頻學(xué)習(xí)用戶分類算法的準(zhǔn)確性,完善了社會學(xué)習(xí)網(wǎng)絡(luò)的個性化策略。
[Abstract]:With the development of Internet technology, the society has entered the era of information explosion, and the increasing demand for knowledge has already exceeded the scope of traditional education model. How to make full use of information resources in the information world, to create a personalized learning environment, and to meet the needs of people learning at any time and anywhere has become an urgent task. Social learning network is based on Web2.0 technology and big data mining technology for knowledge mining, integration, storage and dissemination of the network, can provide personalized learning programs according to user information, and through text, voice, Human-computer interaction, such as video, provides users with knowledge to meet the needs of learning anytime and anywhere. Although the social learning network can meet the learning needs of people in the era of information explosion, its intelligent decision-making mechanism is far from perfect because it is still in the early stage of development. Based on the development of mobile Internet and big data mining technology, this paper studies the design and application of classification method in social learning network. The main research work and innovations include the following aspects: 1) in order to obtain real and reliable research data, This paper first designs and develops an online social learning Internet platform. Unlike other online learning platforms, the platform not only provides learning functions such as course discussion, instructional video playback, but also provides social functions such as information guidance, campus interaction, etc. It provides a reference scheme for the design and implementation of social learning network platform. As the basis of classification research, the platform realizes the data collection function of social learning network. 2) the course discussion area of social learning network is used for the communication between users. It brings great inconvenience to users. In order to solve this problem, this paper proposes a method of information classification and sorting in course discussion area by using data mining technology, which can help users to obtain useful information quickly. Different from the single course classification method, the paper uses the topic information of n courses to form a data source, and converts the binary unbalanced classification problem into the n-l element balanced classification problem, thus improving the accuracy of course topic classification and sorting. The experimental results verify the validity of the proposed algorithm and improve the intelligent mechanism of social learning network. 3) Social learning network preserves a large number of user video click information, but these information are not utilized. Cause a great waste of information. In order to solve this problem, a user classification method based on video click-stream data is proposed in this paper. The user click-behavior is used to identify the user's learning degree. Different from other video click-behavior research, this paper improves user click event design based on online learning Internet platform, establishes a new user click model, and links user click behavior with learning level. The experimental results verify the accuracy of the proposed video learning user classification algorithm and improve the personalized strategy of social learning network.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP393.4;TP311.13

【參考文獻】

相關(guān)期刊論文 前10條

1 潘慶紅;趙呈領(lǐng);;網(wǎng)絡(luò)自主學(xué)習(xí)支持系統(tǒng)的動態(tài)反饋機制研究[J];中國電化教育;2012年06期

2 管華;李禹生;徐軍利;樊昌秀;;基于網(wǎng)絡(luò)教學(xué)資源平臺的個性化自主學(xué)習(xí)研究[J];計算機教育;2012年06期

3 章昌平;黃梅芳;陳潔;;社會化學(xué)習(xí)背景下的研究生個人終身學(xué)習(xí)體系構(gòu)建[J];高教論壇;2010年10期

4 馮琳;張愛文;;理念與實踐:終身學(xué)習(xí)體系和學(xué)習(xí)型社會——中國教育學(xué)會常務(wù)副會長談松華訪談錄[J];中國遠(yuǎn)程教育;2007年02期

5 翟林,劉亞軍;支持向量機的中文文本分類研究[J];計算機與數(shù)字工程;2005年03期

6 代六玲,黃河燕,陳肇雄;中文文本分類中特征抽取方法的比較研究[J];中文信息學(xué)報;2004年01期

7 張東禮,汪東升,鄭緯民;基于VSM的中文文本分類系統(tǒng)的設(shè)計與實現(xiàn)[J];清華大學(xué)學(xué)報(自然科學(xué)版);2003年09期

8 都云琪,肖詩斌;基于支持向量機的中文文本自動分類研究[J];計算機工程;2002年11期

9 宮秀軍,劉少輝,史忠植;一種增量貝葉斯分類模型[J];計算機學(xué)報;2002年06期

10 宮秀軍,孫建平,史忠植;主動貝葉斯網(wǎng)絡(luò)分類器[J];計算機研究與發(fā)展;2002年05期

相關(guān)博士學(xué)位論文 前2條

1 古平;基于貝葉斯模型的文檔分類及相關(guān)技術(shù)研究[D];重慶大學(xué);2006年

2 王利民;貝葉斯學(xué)習(xí)理論中若干問題的研究[D];吉林大學(xué);2005年

相關(guān)碩士學(xué)位論文 前1條

1 王雷;基于改進貝葉斯算法的文本分類器的研究及其在NERMS中的應(yīng)用[D];吉林大學(xué);2006年

,

本文編號:2415793

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2415793.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7930f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com