社會學(xué)習(xí)網(wǎng)絡(luò)的分類方法研究與設(shè)計
[Abstract]:With the development of Internet technology, the society has entered the era of information explosion, and the increasing demand for knowledge has already exceeded the scope of traditional education model. How to make full use of information resources in the information world, to create a personalized learning environment, and to meet the needs of people learning at any time and anywhere has become an urgent task. Social learning network is based on Web2.0 technology and big data mining technology for knowledge mining, integration, storage and dissemination of the network, can provide personalized learning programs according to user information, and through text, voice, Human-computer interaction, such as video, provides users with knowledge to meet the needs of learning anytime and anywhere. Although the social learning network can meet the learning needs of people in the era of information explosion, its intelligent decision-making mechanism is far from perfect because it is still in the early stage of development. Based on the development of mobile Internet and big data mining technology, this paper studies the design and application of classification method in social learning network. The main research work and innovations include the following aspects: 1) in order to obtain real and reliable research data, This paper first designs and develops an online social learning Internet platform. Unlike other online learning platforms, the platform not only provides learning functions such as course discussion, instructional video playback, but also provides social functions such as information guidance, campus interaction, etc. It provides a reference scheme for the design and implementation of social learning network platform. As the basis of classification research, the platform realizes the data collection function of social learning network. 2) the course discussion area of social learning network is used for the communication between users. It brings great inconvenience to users. In order to solve this problem, this paper proposes a method of information classification and sorting in course discussion area by using data mining technology, which can help users to obtain useful information quickly. Different from the single course classification method, the paper uses the topic information of n courses to form a data source, and converts the binary unbalanced classification problem into the n-l element balanced classification problem, thus improving the accuracy of course topic classification and sorting. The experimental results verify the validity of the proposed algorithm and improve the intelligent mechanism of social learning network. 3) Social learning network preserves a large number of user video click information, but these information are not utilized. Cause a great waste of information. In order to solve this problem, a user classification method based on video click-stream data is proposed in this paper. The user click-behavior is used to identify the user's learning degree. Different from other video click-behavior research, this paper improves user click event design based on online learning Internet platform, establishes a new user click model, and links user click behavior with learning level. The experimental results verify the accuracy of the proposed video learning user classification algorithm and improve the personalized strategy of social learning network.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP393.4;TP311.13
【參考文獻】
相關(guān)期刊論文 前10條
1 潘慶紅;趙呈領(lǐng);;網(wǎng)絡(luò)自主學(xué)習(xí)支持系統(tǒng)的動態(tài)反饋機制研究[J];中國電化教育;2012年06期
2 管華;李禹生;徐軍利;樊昌秀;;基于網(wǎng)絡(luò)教學(xué)資源平臺的個性化自主學(xué)習(xí)研究[J];計算機教育;2012年06期
3 章昌平;黃梅芳;陳潔;;社會化學(xué)習(xí)背景下的研究生個人終身學(xué)習(xí)體系構(gòu)建[J];高教論壇;2010年10期
4 馮琳;張愛文;;理念與實踐:終身學(xué)習(xí)體系和學(xué)習(xí)型社會——中國教育學(xué)會常務(wù)副會長談松華訪談錄[J];中國遠(yuǎn)程教育;2007年02期
5 翟林,劉亞軍;支持向量機的中文文本分類研究[J];計算機與數(shù)字工程;2005年03期
6 代六玲,黃河燕,陳肇雄;中文文本分類中特征抽取方法的比較研究[J];中文信息學(xué)報;2004年01期
7 張東禮,汪東升,鄭緯民;基于VSM的中文文本分類系統(tǒng)的設(shè)計與實現(xiàn)[J];清華大學(xué)學(xué)報(自然科學(xué)版);2003年09期
8 都云琪,肖詩斌;基于支持向量機的中文文本自動分類研究[J];計算機工程;2002年11期
9 宮秀軍,劉少輝,史忠植;一種增量貝葉斯分類模型[J];計算機學(xué)報;2002年06期
10 宮秀軍,孫建平,史忠植;主動貝葉斯網(wǎng)絡(luò)分類器[J];計算機研究與發(fā)展;2002年05期
相關(guān)博士學(xué)位論文 前2條
1 古平;基于貝葉斯模型的文檔分類及相關(guān)技術(shù)研究[D];重慶大學(xué);2006年
2 王利民;貝葉斯學(xué)習(xí)理論中若干問題的研究[D];吉林大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 王雷;基于改進貝葉斯算法的文本分類器的研究及其在NERMS中的應(yīng)用[D];吉林大學(xué);2006年
,本文編號:2415793
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2415793.html