模糊關(guān)聯(lián)規(guī)則在推薦系統(tǒng)的應(yīng)用研究
[Abstract]:With the development of information industrialization, more and more information has been accepted by people, which has exceeded the range of personal and system acceptance and understanding, which has affected our life, study, work and interpersonal relationships. This is information overload, and information overload for us to bring trouble. Requirements drive the development of technology, recommendation system is produced, it is active for users to locate and push the content of their interest. Personalized recommendation system is widely used in our life, learning and industrial production. It not only affects the way we live, study and work, but also promotes the development of economy. Therefore, the study of personalized recommendation system has practical significance. Association rules first mine all frequent itemsets from historical data, and then find all strong association rules from frequent itemsets. Nowadays, association rules have become a common method of recommendation system. But the association rules based on Boolean type can only deal with Boolean data, but not quantitative data, so the algorithm has some limitations, so we introduce the concept of fuzzy. The fuzzy concept is introduced into the association rule algorithm and applied to the recommendation system to improve the rationality of the recommendation results. At the same time, there is a disadvantage of association rules, which affects the efficiency of the algorithm by using too large set of frequent candidate items. Therefore, a fuzzy association rule based on decision tree is proposed in this paper, and it is applied to the recommendation system, which not only improves the efficiency of the algorithm, but also makes the recommendation system personalized and humanized. Based on recommendation system, association rules, fuzzy theory and decision tree, this paper mainly introduces the algorithm of association rules. The theoretical knowledge of fuzzy association rules algorithm and decision tree algorithm and their application in recommendation system. The research results are as follows: 1) the basic principles of association rules and fuzzy association rules are studied, and the process of mining frequent sets by apriori algorithm is introduced. This paper also introduces the process of mining strong association rules frequently. 2) the basic principle of decision tree algorithm is studied, and the process of constructing decision tree using ID3 algorithm and C4.5 algorithm is introduced. It also introduces the pruning and decision operation of decision tree. 3) the algorithm of fuzzy association rules based on decision tree is studied. How to optimize the performance of apriori algorithm based on decision tree is introduced. 4) the fuzzy association rules and fuzzy association rules based on decision tree are applied to the recommendation system and implemented by programming. The differences between the two models are given in the practical application.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP311.13;TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 羅來鵬;模糊關(guān)聯(lián)規(guī)則支持度選擇的一種改進[J];計算機與現(xiàn)代化;2005年04期
2 張保穩(wěn),何華燦;有效支持度和模糊關(guān)聯(lián)規(guī)則挖掘[J];小型微型計算機系統(tǒng);2002年09期
3 徐鳳生,陸玉昌;模糊關(guān)聯(lián)規(guī)則的挖掘算法[J];德州學(xué)院學(xué)報(自然科學(xué)版);2002年02期
4 王新,王勇;基于模糊類層次的廣義模糊關(guān)聯(lián)規(guī)則挖掘[J];計算機工程與應(yīng)用;2002年17期
5 陸建江,錢祖平,張文獻;挖掘集合值關(guān)系數(shù)據(jù)庫的模糊關(guān)聯(lián)規(guī)則[J];計算機工程;2002年08期
6 陸建江,張文獻;區(qū)間值關(guān)系數(shù)據(jù)庫上模糊關(guān)聯(lián)規(guī)則的預(yù)測方法[J];計算機工程與應(yīng)用;2003年12期
7 馬常杰,陳守余;數(shù)據(jù)庫中模糊關(guān)聯(lián)規(guī)則挖掘研究進展[J];計算機工程與應(yīng)用;2003年31期
8 張素文,孟建良,龐春江;模糊關(guān)聯(lián)規(guī)則的加權(quán)挖掘算法[J];微機發(fā)展;2003年04期
9 崔新春,韓莉莉;多層次模糊關(guān)聯(lián)規(guī)則挖掘算法[J];計算機工程與應(yīng)用;2004年10期
10 王炳雪;時間序列模糊關(guān)聯(lián)規(guī)則的挖掘[J];計算機工程與應(yīng)用;2004年12期
相關(guān)會議論文 前4條
1 杜瀊;陸建江;宋自林;;大型數(shù)據(jù)庫中模糊關(guān)聯(lián)規(guī)則的挖掘[A];第十六屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集[C];1999年
2 韋素云;吉根林;楊明;;基于聚類的模糊關(guān)聯(lián)規(guī)則挖掘[A];第二十二屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2005年
3 呂曉華;薛永生;林子雨;張健達;;分布式挖掘多層模糊關(guān)聯(lián)規(guī)則的算法優(yōu)化研究[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 陳國青;衛(wèi)強;;模糊關(guān)聯(lián)規(guī)則及其發(fā)現(xiàn)方法[A];中國系統(tǒng)工程學(xué)會模糊數(shù)學(xué)與模糊系統(tǒng)委員會第十一屆年會論文選集[C];2002年
相關(guān)博士學(xué)位論文 前1條
1 吳簡;面向業(yè)務(wù)的基于模糊關(guān)聯(lián)規(guī)則挖掘的網(wǎng)絡(luò)故障診斷[D];電子科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 冉娜;模糊關(guān)聯(lián)規(guī)則挖掘技術(shù)研究及其在推薦系統(tǒng)中的應(yīng)用[D];西南交通大學(xué);2015年
2 王振亞;模糊關(guān)聯(lián)規(guī)則在推薦系統(tǒng)的應(yīng)用研究[D];中國地質(zhì)大學(xué)(北京);2016年
3 周越;多域分布式網(wǎng)絡(luò)中告警模糊關(guān)聯(lián)規(guī)則挖掘的研究[D];電子科技大學(xué);2016年
4 唐洪霞;模糊關(guān)聯(lián)規(guī)則挖掘及其應(yīng)用研究[D];西華大學(xué);2010年
5 焦冬艷;面向醫(yī)療數(shù)據(jù)的模糊關(guān)聯(lián)規(guī)則挖掘[D];汕頭大學(xué);2010年
6 高雅;關(guān)于模糊蘊涵算子在模糊關(guān)聯(lián)規(guī)則挖掘中的應(yīng)用及其影響的研究[D];西南交通大學(xué);2004年
7 王暢;模糊關(guān)聯(lián)規(guī)則挖掘及其應(yīng)用[D];南京航空航天大學(xué);2012年
8 王文熙;模糊關(guān)聯(lián)規(guī)則挖掘算法的研究與應(yīng)用[D];國防科學(xué)技術(shù)大學(xué);2010年
9 黨勤華;模糊關(guān)聯(lián)規(guī)則挖掘模型的研究與應(yīng)用[D];鄭州大學(xué);2011年
10 劉盼;基于多層模糊關(guān)聯(lián)規(guī)則挖掘的網(wǎng)絡(luò)告警相關(guān)性分析[D];電子科技大學(xué);2013年
,本文編號:2415160
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2415160.html