基于時空軌跡數(shù)據(jù)的交通狀態(tài)分析及預(yù)測
[Abstract]:Traffic pressure has become a difficult problem for every city to develop to a certain degree. To alleviate traffic pressure, scientific and effective traffic management measures are needed. How to obtain the information and data in the traffic network, realize the real-time monitoring of the traffic state of the urban road network, and combine the massive real-time traffic information in the road network with the huge historical database, and select the appropriate traffic parameters. It is the key content of Intelligent Transportation system to establish an effective mathematical model to analyze the change of road traffic state in time and accurately, and then to predict the traffic situation in the future, and to provide help for traffic information service, traffic control and guidance. In this paper, taxi GPS data with high trip rate and high network coverage are selected as the high quality floating vehicle space-time track data to reflect the traffic situation of the urban road network in real time. Using big data technology based on Hadoop platform to manage and deal with huge traffic state information, it solves the problem of mass data processing in traditional way, and has the advantages of high efficiency, high accuracy and high timeliness. This is very important for analyzing traffic conditions and making predictions in time. At the same time, because of the complexity caused by the difference between different roads, it is not appropriate to describe the road traffic condition only by the parameters such as traffic flow or travel time. In order to analyze and predict the state of road traffic more effectively, accurately and in time, this paper chooses the speed of road section as a more reasonable parameter of traffic state. In addition, this paper analyzes the time series of road speed after road network division, using the quartile characteristic optimization algorithm to improve the rationality and accuracy of the section speed model, and verifies the validity of the quartile method through the real historical data. The results show that the method not only reflects the changing trend of road speed, but also weakens the influence of extreme value and abnormal value, and it can show a reasonable process of traffic state change, and its calculation is simple and convenient. Computing resources are saved effectively for large-scale data processing. The curve fitting of the calculated results also proves the reliability of the quartile method. Then using the mathematical model based on the weighted mean value and the revised value of the historical data of the same year, the traffic speed of the future road section is forecasted in the division section. The results show that the prediction model can effectively predict the changing trend of traffic state, and the prediction result of road speed is very close to the real value. The prediction results can effectively help traffic guidance services and traffic management decisions.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭建湖;林小惠;鄭禮席;張書虎;;基于馬爾可夫鏈模型的交通擁擠狀態(tài)預(yù)測[J];交通標(biāo)準(zhǔn)化;2012年22期
2 錢民;唐克生;;基于定性動態(tài)概率網(wǎng)絡(luò)的交通狀態(tài)預(yù)測及改進(jìn)[J];云南大學(xué)學(xué)報(自然科學(xué)版);2012年02期
3 楊兆升;龔勃文;林賜云;張欣偉;;分對數(shù)模型在城市快速路交通狀態(tài)預(yù)測中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報;2009年04期
4 溫慧敏;扈中偉;郭繼孚;朱麗云;孫建平;;奧運(yùn)期間北京市道路網(wǎng)運(yùn)行分析[J];交通運(yùn)輸系統(tǒng)工程與信息;2008年06期
5 盛春陽;張元;;基于貝葉斯網(wǎng)絡(luò)模型的交通狀態(tài)預(yù)測[J];公路與汽運(yùn);2008年01期
6 朱麗云;溫慧敏;孫建平;;北京市浮動車交通狀況信息實時計算系統(tǒng)[J];城市交通;2008年01期
7 徐建閩;傅惠;許倫輝;;關(guān)聯(lián)交叉口短時交通流可預(yù)測性分析及組合預(yù)測算法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2007年10期
8 韓舒;林航飛;辛飛飛;;浮動車采集系統(tǒng)中城市道路分段方法研究[J];交通與計算機(jī);2007年05期
9 傅惠;徐建閩;;基于卡爾曼濾波的路徑行程時間預(yù)測方法[J];微計算機(jī)信息;2007年22期
10 翁劍成;榮建;于泉;任福田;;基于浮動車數(shù)據(jù)的行程速度估計算法及優(yōu)化[J];北京工業(yè)大學(xué)學(xué)報;2007年05期
相關(guān)博士學(xué)位論文 前4條
1 郭歡;基于灰理論的短時交通流動力學(xué)建模預(yù)測與優(yōu)化研究[D];武漢理工大學(xué);2013年
2 李琦;基于多源數(shù)據(jù)的交通狀態(tài)監(jiān)測與預(yù)測方法研究[D];吉林大學(xué);2013年
3 王新穎;基于網(wǎng)格的短時交通狀態(tài)預(yù)測研究[D];吉林大學(xué);2010年
4 姚智勝;基于實時數(shù)據(jù)的道路網(wǎng)短時交通流預(yù)測理論與方法研究[D];北京交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 張本士;基于浮動車軌跡的城市交通擁堵評估與預(yù)測[D];大連理工大學(xué);2014年
2 孫曉亮;面向城市快速路的道路交通狀態(tài)預(yù)測方法的研究[D];北京交通大學(xué);2009年
3 龔珊;基于浮動車GPS數(shù)據(jù)的行車速度預(yù)測模型研究[D];北京交通大學(xué);2009年
4 陳青;基于GPS浮動車的城市道路交通狀態(tài)判別技術(shù)研究[D];長安大學(xué);2009年
5 唐金芝;數(shù)據(jù)融合技術(shù)在高速公路交通事件檢測中的應(yīng)用[D];吉林大學(xué);2007年
6 董均宇;基于GPS浮動車的城市路段平均速度估計技術(shù)研究[D];重慶大學(xué);2006年
,本文編號:2414313
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2414313.html