基于梯度信息的AUV水下管道檢測(cè)方法研究
[Abstract]:The ocean is rich in biological resources and mineral resources, which is becoming a new space for human resources development. The development of marine resources needs the support of science and technology and equipment. Underwater vehicle is becoming an important tool for developing marine resources because of its safety, high efficiency, high depth of work, and can work under water for a long time. Underwater vehicle (AUV) technology is a hot topic in many countries, and underwater target detection and tracking based on vision is one of the key technologies in underwater vehicle research. In this paper, the research of underwater pipeline detection and tracking method based on optical vision for intelligent underwater vehicle (AUV) is carried out in combination with the project of engineering technology of marine intelligent submersible by the Ministry of Industry and Information Technology. The main contents are as follows: 1. The characteristics of underwater optical imaging and underwater images are analyzed. According to the requirement of image denoising and fast algorithm, Gao Si de-sampling method is studied. Considering Gao Si's disadvantage of smoothing edge, the concept of image scale space is introduced, and the algorithm of Gao Si de-sampling is improved. In the study of image enhancement algorithm, aiming at the shortcomings of traditional fuzzy enhancement algorithm, such as large computation and low gray information loss, a new enhancement algorithm based on histogram information is constructed to determine the value of crossing point. 2. In the process of underwater pipeline detection, the traditional method is line detection algorithm based on Hough transform. This paper first studies the underwater pipeline detection method based on Hough variation, and analyzes the shortcomings of the method, such as false detection and high complexity, so a new line segment detection algorithm based on image gradient information is introduced. The region growing algorithm is improved. Then according to the characteristics of the pipeline, the detected segment is restricted and the location of the pipeline is finally located. Finally, through a large number of comparative experiments, the advantages of this method compared with the traditional method based on Hough transform are verified from the accuracy of detection and the speed of the algorithm. 3. The geometric model of camera imaging is analyzed, and the transformation relationship between pipeline image coordinate system and robot coordinate system is studied. The camera calibration experiment was carried out by Zhang Zhengyou calibration method, and the internal parameters of the camera were obtained. According to the installation position and angle of the camera, the external parameters of the camera are determined. Finally determine the pipeline image coordinates to the robot coordinate transformation relationship. 4. The software and hardware architecture of the optical vision system for AUV pipeline detection and tracking is constructed, and the simulation experiment of the AUV underwater pipeline detection and tracking system under the hardware-in-the-loop simulation platform is carried out to verify the validity of the algorithm and the reliability of the system. Finally, the algorithm of this paper is used for off-line detection of multiple sets of water pool pipeline images. The experimental results show that the proposed algorithm can effectively detect underwater pipelines and meet the real-time requirements of the system.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP242;TP391.41;U674.941
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬(wàn)洪林;李寶生;韓民;李登旺;;基于非線性尺度空間的非理想虹膜邊界定位[J];通信學(xué)報(bào);2014年03期
2 張輝;;水的光學(xué)特性對(duì)水下光學(xué)成像質(zhì)量影響的分析[J];電子測(cè)試;2013年20期
3 張東清;羅友;孫艷玲;羅云慎;;一種簡(jiǎn)單的攝像機(jī)標(biāo)定技術(shù)在視覺(jué)定位中的應(yīng)用[J];生命科學(xué)儀器;2012年06期
4 朱順痣;施華;劉利釗;葉東毅;;高斯核尺度空間中的采樣算法研究[J];計(jì)算機(jī)科學(xué)與探索;2012年07期
5 黃明泉;;水下機(jī)器人ROV在海底管線檢測(cè)中的應(yīng)用[J];海洋地質(zhì)前沿;2012年02期
6 覃勛輝;馬戎;付維平;李歲勞;;一種基于梯度的直線段檢測(cè)算法[J];光子學(xué)報(bào);2012年02期
7 王巖;周蕭;;針對(duì)人臉識(shí)別的圖像預(yù)處理[J];科技信息;2011年16期
8 楊風(fēng)暴;李偉偉;藺素珍;王飛躍;;紅外偏振與紅外光強(qiáng)圖像的融合研究[J];紅外技術(shù);2011年05期
9 邵曉東;莊傳晶;韓新利;劉養(yǎng)勤;何小東;李發(fā)根;;酸性環(huán)境用油氣輸送管線鋼的研究進(jìn)展[J];機(jī)械工程材料;2010年11期
10 藍(lán)國(guó)寧;李建;籍芳;;基于小波的水下圖像后向散射噪聲去除[J];海洋技術(shù);2010年02期
相關(guān)博士學(xué)位論文 前3條
1 曾文靜;基于光視覺(jué)的無(wú)人艇水面目標(biāo)檢測(cè)與跟蹤研究[D];哈爾濱工程大學(xué);2013年
2 王永雄;管道機(jī)器人控制、導(dǎo)航和管道檢測(cè)技術(shù)研究[D];上海交通大學(xué);2012年
3 唐旭東;智能水下機(jī)器人水下管道檢測(cè)與跟蹤技術(shù)研究[D];哈爾濱工程大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 鄧元保;海底電纜水下檢測(cè)機(jī)器人仿真技術(shù)研究[D];大連海事大學(xué);2014年
2 胡波;基于顏色不變量的特征匹配算法研究[D];遼寧大學(xué);2014年
3 遲迎;ROV作業(yè)視景仿真技術(shù)研究[D];哈爾濱工程大學(xué);2013年
4 路振;無(wú)人智能潛器水下目標(biāo)探測(cè)跟蹤技術(shù)研究[D];哈爾濱工程大學(xué);2013年
5 周崢;圖像增強(qiáng)算法及應(yīng)用研究[D];北京工業(yè)大學(xué);2012年
6 萬(wàn)媛媛;水下光視覺(jué)目標(biāo)檢測(cè)與定位系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2012年
7 盧飛遠(yuǎn);擴(kuò)展支持向量機(jī)在手背靜脈識(shí)別中的研究[D];西安石油大學(xué);2011年
8 戴磊;基于視覺(jué)反饋的移動(dòng)機(jī)器人控制[D];上海交通大學(xué);2011年
9 趙煜森;ROV水下作業(yè)仿真系統(tǒng)的研究[D];哈爾濱工程大學(xué);2011年
10 王蘇婭;雙目立體視覺(jué)分析方法研究[D];西安電子科技大學(xué);2011年
,本文編號(hào):2411941
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2411941.html