工業(yè)射線圖像質(zhì)量的自檢測(cè)軟件系統(tǒng)研究與實(shí)現(xiàn)
[Abstract]:With the improvement of the level of industrial development in China, the demand and output of industrial products are increasing day by day, the corresponding difficulty of quality control of industrial products is also increasing, the traditional detection process mostly depends on manual completion. On the basis of not increasing manpower input, it is obvious that it is unable to meet the increasing demand of detection, and it is a long-term and effective solution to realize test automation. Non-destructive testing (NDT) technology is an effective means to control product quality, and X-ray testing technology is one of the preferred methods of NDT. With the development of technology, digital radiography technology will become the trend of application in this field. This technique can form the digital radiographic image of the object under inspection, and the digital image supports the computer image processing technology. The application of the computer technology provides the possibility to improve the automation level of the radiographic detection process. The traditional digital ray detection process can be divided into two steps. Firstly, the quality of the digital image itself should be identified, and then the defect information of the subject object should be obtained from the qualified digital image. Based on the principle of digital ray detection, the problem solved in this paper is how to use computer instead of manual to complete the quality identification of the radiographic image itself, and to realize the self-detection of the image quality by image processing technology. First of all, the traditional radiographic image quality detection technology is studied and introduced in this paper, from which the image quality evaluation method and related principles are summarized, and the automatic acquisition threshold module is developed according to the method and principle. The software design scheme of filtering smooth module and rectangle recognition module. Secondly, the principle of the algorithm involved in each module is studied, on the basis of which the adaptive improvement of the algorithm is carried out, and the performance of the improved algorithm is evaluated through experiments. The improved algorithm improves the computational efficiency. Through the integration of the three functional modules, the self-detection system of radiographic image quality is realized. The system is used to detect a large number of actual radiographic images, and compared with the results of manual detection, the feasibility of the system is tested. At the end of this paper, the work done is summarized and the future work is prospected. A large number of experiments show that the software system proposed in this paper is effective and feasible, and the self-detection function of image quality based on image processing has advantages over manual detection in terms of execution efficiency, accuracy of judgement and so on. And has very good development space.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高杰宗;寧宇;;JB/T4730與DL/T821在管道焊縫射線底片像質(zhì)計(jì)靈敏度要求上的差異[J];無損探傷;2015年01期
2 馬風(fēng)梅;;試析自動(dòng)化無損檢測(cè)技術(shù)的應(yīng)用[J];中國(guó)科技信息;2013年16期
3 常麗萍;冀小平;趙梁;;分塊的基于Harris角點(diǎn)檢測(cè)的圖像配準(zhǔn)方法[J];電視技術(shù);2013年01期
4 孫朝明;曾祥照;王增勇;;數(shù)字化射線掃描成像中的圖像評(píng)價(jià)與控制初探[J];CT理論與應(yīng)用研究;2010年02期
5 鄭世才;;對(duì)ASTM E1742—2008標(biāo)準(zhǔn)射線照相質(zhì)量級(jí)別規(guī)定的討論[J];無損檢測(cè);2009年09期
6 金慧珍;趙遼英;劉博;;一種基于譜聚類的灰度圖像分割法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2009年04期
7 張建偉;張啟衡;;基于塊遍歷的直線邊緣特征提取[J];光學(xué)精密工程;2009年03期
8 劉松平;劉菲菲;李樂剛;白金鵬;曹正華;謝富原;郭恩明;;自動(dòng)化無損檢測(cè)技術(shù)及其應(yīng)用[J];航空制造技術(shù);2009年04期
9 鄭世才;;雙絲像質(zhì)計(jì)介紹[J];無損探傷;2007年03期
10 李博;楊丹;張小洪;;基于Harris多尺度角點(diǎn)檢測(cè)的圖像配準(zhǔn)新算法[J];計(jì)算機(jī)工程與應(yīng)用;2006年35期
相關(guān)會(huì)議論文 前1條
1 張孝玲;董德秀;;國(guó)內(nèi)外射線檢測(cè)技術(shù)淺析[A];第八屆沈陽科學(xué)學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)碩士學(xué)位論文 前5條
1 郭明;殘缺和破損條形碼的圖像識(shí)別技術(shù)研究[D];哈爾濱理工大學(xué);2014年
2 鐘若丹;基于數(shù)字圖像處理的條形碼識(shí)別方法[D];西安工業(yè)大學(xué);2010年
3 王恩永;基于模糊聚類的灰度圖像特征提取和識(shí)別研究[D];云南大學(xué);2010年
4 孫碧亮;基于機(jī)器視覺的檢測(cè)算法研究及其在工業(yè)領(lǐng)域的應(yīng)用[D];華中科技大學(xué);2006年
5 姜立芳;工業(yè)視覺檢查系統(tǒng)中模式識(shí)別的研究[D];哈爾濱理工大學(xué);2003年
,本文編號(hào):2410253
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2410253.html