面向英文文章自動(dòng)評(píng)改的詞性標(biāo)注技術(shù)的研究與實(shí)現(xiàn)
[Abstract]:With the development of the times, the number of Chinese English learners is rising sharply. The limited teacher resources and the huge learning demand make the intelligent automatic assistant teaching pay more attention. The intelligent evaluation system of English articles is an automatic evaluation system for Chinese English learners, which greatly alleviates the contradiction between the excessive number of English learners and the shortage of teachers' resources. Part of speech tagging for Chinese students' English articles is the basis for automatic evaluation of Chinese students' English articles. Up to now, a large number of researchers have done a lot of useful research on English part-of-speech tagging. However, it is very rare to study the part of speech tagging in English articles written by Chinese students. In addition, in most of the existing parts of speech tagging methods, the artificial feature extraction process is essential. Due to the fact that there may be a large number of unknown errors in English articles written by Chinese students, and the errors made by English learners at different levels are very different. Therefore, it is very difficult to find the features that need to be extracted for this kind of articles. From the point of view of word vector, this paper studies the part of speech tagging of English articles written by Chinese students. In this paper, we propose a two-layer tagging method based on word vector. In this method, only a small number of artificial features are extracted, and most of the features are obtained by automatically training the word vector and the first layer tagging probability vector. In addition, the method divides the tagging set into two categories, and carries on the part of speech tagging according to the two-layer structure. A dynamic updating method for eigenvalues is proposed. The method dynamically updates the eigenvalues according to certain rules during the training process of the annotation model. The part of speech tagging model in this paper uses the dynamic updating method of the above eigenvalues to train, and then uses the two-layer tagging method based on word vector to label the text in part of speech. The accuracy of this method is 95.63. It exceeds the accuracy of the existing word vector tagging devices for Chinese students' English articles.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.1;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚詠梅;吳坤;;面向英語(yǔ)文章的詞性標(biāo)注算法[J];北京郵電大學(xué)學(xué)報(bào);2014年06期
2 譚詠梅;楊雪;;結(jié)合實(shí)體鏈接與實(shí)體聚類的命名實(shí)體消歧[J];北京郵電大學(xué)學(xué)報(bào);2014年05期
3 朱敏;賈真;左玲;吳安峻;陳方正;柏玉;;中文微博實(shí)體鏈接研究[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
4 張楊;;如何提高學(xué)生英語(yǔ)寫作水平[J];黑龍江教育學(xué)院學(xué)報(bào);2012年05期
5 李業(yè)剛;孫福振;李鑒柏;呂新宇;;語(yǔ)義角色標(biāo)注研究綜述[J];山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
6 金雪丹;施朝健;;圖像處理與神經(jīng)網(wǎng)絡(luò)識(shí)別技術(shù)在船舶分類中的應(yīng)用(英文)[J];上海海事大學(xué)學(xué)報(bào);2007年01期
7 李紅;;大學(xué)生英語(yǔ)寫作常見(jiàn)錯(cuò)誤歸類分析[J];當(dāng)代教育論壇;2006年16期
8 胡耀垓,李偉,胡繼明;一種改進(jìn)激活函數(shù)的人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2004年10期
9 邢永康;馬少平;;統(tǒng)計(jì)語(yǔ)言模型綜述[J];計(jì)算機(jī)科學(xué);2003年09期
10 陳傳波,彭炎,陸楓;基于聚類的神經(jīng)網(wǎng)絡(luò)及其在預(yù)測(cè)中的應(yīng)用[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年06期
相關(guān)碩士學(xué)位論文 前2條
1 吳廣財(cái);HMM增量學(xué)習(xí)算法在中文命名實(shí)體識(shí)別中的應(yīng)用研究[D];華南理工大學(xué);2011年
2 雷靜;基于圖像處理和神經(jīng)網(wǎng)絡(luò)的車牌識(shí)別系統(tǒng)研究[D];中南大學(xué);2009年
,本文編號(hào):2402964
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2402964.html