和聲搜索算法在數(shù)字圖像分割中的應(yīng)用研究
[Abstract]:With the rapid development of science and technology, the application of digital image in various fields is increasing day by day. Image segmentation is a basic technology of image processing, so people pay more and more attention to it. The method of image segmentation can be interpreted as dividing the image into parts with different features, then extracting the effective parts, and it is an important way for image processing to transition to analysis, and it has a very important position in the field of image. At the same time, it has been widely used in most fields and achieved good results. Nowadays, more and more intelligent algorithms are applied in the field of image segmentation. Most of the excellent intelligent algorithms have gradually replaced the usual methods, and are now the effective way to solve most optimization problems. Now the common intelligent algorithms are due to some of its own excellent characteristics with a small amount of computing time to achieve higher results. In recent years, Geem et al. have proposed a meta-heuristic algorithm, the harmony search (Harmony Search,HS) algorithm, which is compared with genetic algorithm, simulated annealing algorithm and Tabu search. Experimental results show that the performance of HS algorithm is good. However, there are still many problems to be solved in the research and application of HS. This paper mainly studies the improvement of the intelligent algorithm and uses the improved intelligent algorithm to improve the efficiency of the traditional segmentation algorithm. The work is as follows: firstly, several classical methods of image segmentation and the source, basic principle, concrete steps of HS are described, and their advantages and disadvantages are analyzed. This paper summarizes the problems faced by HS in engineering application and the main research directions at present, and discusses several classical improved HS.. Then, aiming at the deficiency that HS is easy to fall into local optimum, which leads to early convergence, a harmonic search (Local Search technique fusion of Harmony Search,LSHS algorithm combining local search is proposed in this paper. In the LSHS algorithm, the optimal harmonic vector and the two random harmonic vectors in the population are linearly combined to generate a new harmony, which expands the local search area and improves the convergence speed of the algorithm. The test results of LSHS and HS,GHS (Global-best Harmony Search,GHS) are compared with 9 standard test functions. The results show that the results of LSHS are better and the performance is better. Finally, because the optimization method can be used to find the optimal threshold, the LSHS proposed in this paper is applied to the maximum entropy segmentation. Three algorithms, HS,GHS and LSHS, are used to segment gray and color images, and the simulation results show that the segmentation efficiency of LSHS is higher than that of HS and GHS. By comparing several color spaces of color images (mainly RGB,HSV and HSI), the LSHS algorithm is applied to different color spaces for image segmentation. The experimental results show that LSHS can segment all kinds of color space efficiently, improve the deficiency of HS falling into local optimal value, and have better stability and robustness than HS,GHS.
【學位授予單位】:江西理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 張新明;涂強;尹欣欣;馮夢清;;嵌入趨化算子的PSO算法及其在多閾值分割中的應(yīng)用[J];計算機科學;2016年02期
2 井福榮;郭肇祿;羅會蘭;;一種應(yīng)用精英混沌搜索的函數(shù)優(yōu)化算法[J];江西理工大學學報;2015年05期
3 雍龍泉;;一類改進的和聲搜索算法及其在化工優(yōu)化問題中的應(yīng)用[J];黑龍江大學自然科學學報;2015年04期
4 楊樹欣;李盼池;;和聲搜索算法的改進研究[J];計算機技術(shù)與發(fā)展;2015年04期
5 劉曉志;楊晨;;基于自適應(yīng)和聲搜索算法的攝像機標定方法[J];計算機工程與設(shè)計;2014年07期
6 張景虎;孔芳;;人工智能算法在圖像處理中的應(yīng)用[J];電子技術(shù)與軟件工程;2014年08期
7 薛亞娣;;和聲搜索算法綜述[J];現(xiàn)代婦女(下旬);2014年03期
8 姜華;包云;劉彥秀;鄭麗萍;;混合變鄰域和聲搜索的獨立任務(wù)調(diào)度問題研究[J];計算機工程與設(shè)計;2013年10期
9 杜永峰;李萬潤;李慧;唐少玉;;和聲搜索算法在結(jié)構(gòu)有限元模型修正中的應(yīng)用[J];蘭州理工大學學報;2013年05期
10 劉建生;喬尚平;匡奕群;;基于差分粒子群和模糊聚類的彩色圖像分割算法[J];江西理工大學學報;2013年05期
相關(guān)博士學位論文 前2條
1 陳韜亦;生物醫(yī)學顯微鏡細胞圖像的運動恢復和分割問題研究[D];哈爾濱工業(yè)大學;2011年
2 王小根;粒子群優(yōu)化算法的改進及其在圖像中的應(yīng)用研究[D];江南大學;2009年
相關(guān)碩士學位論文 前10條
1 路亞緹;基于粒子群優(yōu)化算法的最大熵多閾值圖像分割研究[D];鄭州大學;2015年
2 陳佳業(yè);基于聚類的圖像分割[D];華南理工大學;2014年
3 孫研;基于智能優(yōu)化算法的多閾值圖像分割技術(shù)及其并行加速[D];南京理工大學;2014年
4 向斌;紋理圖像特征提取與子空間分割聚類[D];福州大學;2014年
5 趙憲強;基于模糊聚類的圖像分割方法研究[D];山東師范大學;2013年
6 楊佳;和聲搜索算法及其在多目標優(yōu)化問題中的應(yīng)用研究[D];合肥工業(yè)大學;2013年
7 于鴻銀;基于和聲搜索的FCM算法在圖像分割中的應(yīng)用[D];東北大學;2011年
8 萬施;彩色圖像分割算法研究[D];南昌大學;2010年
9 梁海伶;和聲搜索算法在函數(shù)優(yōu)化問題中的應(yīng)用研究[D];東北大學 ;2009年
10 胡博;彩色圖像分割算法研究[D];電子科技大學;2009年
,本文編號:2400756
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2400756.html