結(jié)構(gòu)光三維掃描測(cè)量技術(shù)的研究
[Abstract]:In this paper, it is difficult to quickly reconstruct the 3D topography of complex parts in the process of industrial field measurement. Based on the binocular stereoscopic vision technology and structural light measurement technology, In this paper, the working principle and 3D reconstruction of the whole field of view self-positioning scanning system are deeply studied and analyzed, and a new non-coded marking circle self-localization method is proposed to reconstruct the 3D contour information of complex objects. The hardware system and measurement software are built to verify the correctness and reliability of the method. Through processing and error analysis of measurement data, it is proved that the system has high measuring precision and speed. The main contents and innovations of this paper are as follows: 1. A non-coding marking circle self-location technique is proposed. Innovatively using the unique characteristics of mark circle diameter to accurately identify and distinguish many mark circles in the direction of polar line. On the basis of the accurate matching of two-dimensional circles and the invariant topological relationship between spatial circles, the point clouds of the same name can be stitched together. The problems of self-calibration and self-calibration of scanner spatial coordinate and point cloud measurement of discontinuous scanning data are solved. 2. Cross laser line refinement extraction and differentiation. Because of the highlight feature of the line laser strip, the laser strip can be extracted by adaptive threshold segmentation algorithm. By analyzing the existing methods of extracting the center of the optical strip, the grayscale average plus weight center method is selected to refine the laser line. The common cross laser line discrimination algorithm will not be able to distinguish accurately in the case of cross point extraction failure. Based on the stereo calibration and stereo correction of binocular system, the cross line is calibrated in optical plane. The three dimensional points calculated by only the correct matching points are located on the optical plane. 3. 3. The whole image processing process is divided into four parallel stages by using Pipeline pipeline multithreading mode, which are image acquisition, cross laser strip thinning extraction, mark circle recognition and matching, point cloud reconstruction, and adjustment of image processing time. This allows for load balancing between child threads, which theoretically compresses processing time to the original 1/4.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 占棟;肖建;;基于線結(jié)構(gòu)光參考平面的多攝像機(jī)靈活標(biāo)定方法研究[J];儀器儀表學(xué)報(bào);2015年09期
2 賈棋;高新凱;羅鐘鉉;樊鑫;郭禾;;基于幾何關(guān)系約束的特征點(diǎn)匹配算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年08期
3 袁建英;王瓊;李柏林;;利用標(biāo)志點(diǎn)多視圖約束實(shí)現(xiàn)結(jié)構(gòu)光掃描高精度粗拼接[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年04期
4 王宇希;劉越;;一種基于多攝像機(jī)的魯棒運(yùn)動(dòng)結(jié)構(gòu)重建方法[J];儀器儀表學(xué)報(bào);2015年01期
5 楊宇;闞凌雁;于佳;王姣姣;元光;王金城;;基于激光掃描的人臉三維重建方法[J];紅外與激光工程;2014年12期
6 熊勝軍;趙飛;趙恒;敖磊;;線結(jié)構(gòu)光自同步掃描三維形貌測(cè)量系統(tǒng)[J];光子學(xué)報(bào);2014年11期
7 蘇顯渝;張啟燦;陳文靜;;結(jié)構(gòu)光三維成像技術(shù)[J];中國(guó)激光;2014年02期
8 宋麗梅;陳昌曼;陳卓;覃名翠;李大鵬;;環(huán)狀編碼標(biāo)記點(diǎn)的檢測(cè)與識(shí)別[J];光學(xué)精密工程;2013年12期
9 聶建輝;馬孜;胡英;;利用立體視覺的線結(jié)構(gòu)光參數(shù)標(biāo)定[J];光電子.激光;2011年12期
10 耿云;孫軍華;劉謙哲;劉震;張廣軍;;自由曲面視覺測(cè)量標(biāo)志點(diǎn)三維匹配方法研究[J];測(cè)控技術(shù);2011年07期
相關(guān)碩士學(xué)位論文 前1條
1 納鵬宇;平行雙目視覺系統(tǒng)研究與實(shí)現(xiàn)[D];北京交通大學(xué);2014年
,本文編號(hào):2385121
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2385121.html