天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于紋理特征的2D-3D人臉活體檢測關(guān)鍵技術(shù)研究

發(fā)布時間:2018-12-13 06:21
【摘要】:人臉識別技術(shù)是一種精度高、穩(wěn)定性好、使用方便的生物識別技術(shù),市場應用前景廣闊。然而,人臉識別技術(shù)頻繁受到假冒攻擊(或復制攻擊),仍存在諸多安全隱患。在抵抗假冒攻擊(或復制攻擊)方面,活體檢測具有顯著的效果,它對樣本是否具有生命特征進行了辨識。針對人臉識別系統(tǒng)無法識別采集的人臉圖像是否來自真人的問題,本文重點研究了基于2D人臉圖像和3D人臉深度圖的活體檢測算法。主要工作包括:1、針對現(xiàn)有3D人臉活體檢測數(shù)據(jù)庫較少的問題,本文采集了一個RGBD人臉數(shù)據(jù)庫。該數(shù)據(jù)庫正樣本包括使用Kinect和另一雙目設(shè)備采集的104個真人在0.5-2米處不同姿態(tài)的深度人臉數(shù)據(jù),共計20973張圖片。負樣本包括使用Kinect采集在不同環(huán)境下0.5-2米處不同角度的ipad、電腦、手機、照片攻擊人臉,共計12300張圖片。2、針對現(xiàn)有的傅里葉頻譜分析方法較為簡單且準確率較低的情況,本文提出了一種改進的傅里葉頻譜特征方法。該方法在對2D人臉區(qū)域圖像提取二維離散傅里葉頻譜圖的基礎(chǔ)上,加入分塊子空間的方法,將傅里葉頻譜圖分成若干個子塊,并求得每一個子塊內(nèi)圖像的平均能量值,歸一化后級聯(lián)成一個全局傅里葉頻譜特征向量。實驗結(jié)果表明,改進后傅里葉頻譜特征能有效地提高2D人臉圖像的活體檢測準確率。3、針對在訓練樣本增加時,基于傅里葉頻譜特征的2D人臉活體檢測準確率會進一步下降的情況,本文提出了融合LBP特征的FS-LBP特征人臉活體檢測方法。該方法將傅里葉頻譜特征和低維的LBP特征級聯(lián),并使用SVM來分類判別。實驗結(jié)果表明,該方法在2D人臉活體檢測上更優(yōu)于時下最主流的MSLBP特征方法。4、針對灰度共生矩陣緯度低,且其3D人臉的活體檢測率仍可進一步提升的情況,本文提出了一種多尺度灰度共生矩陣的方法。該方法首先通過對RGB圖像進行人臉檢測并同步采集深度圖的人臉區(qū)域圖像,其次將人臉區(qū)域深度圖調(diào)整為不同尺度大小的深度圖像,并分別提取其灰度共生矩陣特征,并級聯(lián)成一個多尺度灰度共生矩陣特征,最后使用SVM來分類判別。實驗結(jié)果表明,該方法在3D人臉深度圖上的活體檢測準確率高于灰度共生矩陣特征和LBP特征方法。最后對本文工作進行了總結(jié),并對本文后續(xù)工作進行了展望。
[Abstract]:Face recognition is a kind of biometric technology with high precision, good stability and convenient use. However, face recognition technology is frequently subjected to fake attacks (or copy attacks), there are still many security risks. In the aspect of resisting counterfeiting attack (or replica attack), in vivo detection has remarkable effect, and it identifies whether the sample has life characteristic or not. In order to solve the problem of whether the human face image can not be recognized by the face recognition system, this paper focuses on the living body detection algorithm based on 2D face image and 3D face depth map. The main work is as follows: 1. Aiming at the lack of 3D human face detection database, this paper collects a RGBD face database. The database includes 104 human face data with different pose depth at 0.5-2 meters collected using Kinect and another binocular device, with a total of 20973 images. The negative samples include ipad, computers, mobile phones and photos that use Kinect to collect 0.5-2 meters of different angles in different environments to attack faces, with a total of 12300 images. In view of the simple and low accuracy of the existing Fourier spectrum analysis methods, an improved Fourier spectrum feature method is proposed in this paper. On the basis of extracting 2D discrete Fourier spectrum from 2D face region image, the method of adding block subspace is used to divide the Fourier spectrum into several sub-blocks, and the average energy value of the image in each sub-block is obtained. After normalization, it is cascaded into a global Fourier spectrum eigenvector. Experimental results show that the improved Fourier spectrum features can effectively improve the accuracy of 2D face image in vivo detection. The accuracy of 2D human face detection based on Fourier spectrum features will be further reduced. In this paper, a FS-LBP feature based face detection method based on LBP features is proposed. In this method, Fourier spectrum features and low-dimensional LBP features are concatenated, and SVM is used to classify and discriminate. The experimental results show that this method is better than the most popular MSLBP feature method in 2D face detection. 4. Aiming at the low latitude of gray level co-occurrence matrix and the fact that its 3D face detection rate can be further improved. In this paper, a method of multi-scale gray level co-occurrence matrix is presented. The method firstly detects the face of RGB image and synchronously collects the facial region image of the depth map. Secondly, the depth map of the face region is adjusted to the depth image of different scales, and its gray level co-occurrence matrix feature is extracted respectively. And cascaded into a multi-scale gray level co-occurrence matrix feature, finally using SVM to classify discrimination. Experimental results show that the accuracy of this method is higher than that of gray level co-occurrence matrix and LBP features on 3D face depth images. Finally, the work of this paper is summarized, and the future work of this paper is prospected.
【學位授予單位】:集美大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41

【參考文獻】

相關(guān)期刊論文 前8條

1 謝志華;劉國棟;;基于局部二元模式的快速紅外人臉識別系統(tǒng)[J];紅外與激光工程;2013年12期

2 尹京;方艷梅;;數(shù)碼翻拍圖像取證算法[J];中山大學學報(自然科學版);2011年06期

3 吳賢星;趙杰煜;沈明p,

本文編號:2376059


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2376059.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2a9bf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com