軌道扣件缺失的機器視覺快速檢測方法
發(fā)布時間:2018-12-11 19:59
【摘要】:軌道扣件缺失檢測是鐵路日常巡檢的一項重要內容,結合現代化鐵路對自動化檢測技術的實時性和自適應性要求,提出了一種基于機器視覺的軌道扣件缺失實時檢測方法.為了應對環(huán)境光線的干擾,設計了遮光罩加LED輔助光源的圖像采集裝置,利用開關型中值濾波和基于圖像梯度幅值的改進Canny邊緣檢測方法,對扣件邊緣特征進行自適應圖像增強.結合扣件彈條穩(wěn)定的內外邊緣輪廓特征,利用基于曲線特征投影的模板匹配實現了扣件缺失的實時檢測.經過實驗驗證,平均每幀圖像的處理時間為245.61ms,平均正確識別率為85.8%,且該方法具有一定的自適應性,最高支持3.82m/s的推行速度,可滿足對實際運營線路進行扣件缺失實時檢測的需求.
[Abstract]:Rail fastener missing detection is an important part of railway routine inspection. According to the real-time and adaptive requirements of modern railway automatic detection technology, a real-time detection method based on machine vision for rail fastener missing is proposed. In order to deal with the interference of environmental light, an image acquisition device with mask and LED auxiliary light source is designed. The method of edge detection based on the image gradient is improved by using the switching median filter and the improved Canny edge detection method based on the gradient amplitude of the image. The edge feature of fastener is enhanced by adaptive image enhancement. Combined with the inner and outer edge contour features of fastener elastic strip, the template matching based on curve feature projection is used to realize the real-time detection of fastener missing. The experimental results show that the average image processing time is 245.61msand the average correct recognition rate is 85.8ms.The method is self-adaptive and has the highest speed to support the implementation of 3.82m/s. It can meet the need of real-time detection of missing fastener.
【作者單位】: 蘭州交通大學自動化與電氣工程學院;蘭州工業(yè)學院電子信息工程學院;
【基金】:國家自然科學基金項目(61663022,61461023) 教育部創(chuàng)新團隊發(fā)展計劃(IRT_16R36) 甘肅省高原信息工程及控制重點實驗室開放課題基金(20161105)資助
【分類號】:TP391.41;U216.3
本文編號:2373136
[Abstract]:Rail fastener missing detection is an important part of railway routine inspection. According to the real-time and adaptive requirements of modern railway automatic detection technology, a real-time detection method based on machine vision for rail fastener missing is proposed. In order to deal with the interference of environmental light, an image acquisition device with mask and LED auxiliary light source is designed. The method of edge detection based on the image gradient is improved by using the switching median filter and the improved Canny edge detection method based on the gradient amplitude of the image. The edge feature of fastener is enhanced by adaptive image enhancement. Combined with the inner and outer edge contour features of fastener elastic strip, the template matching based on curve feature projection is used to realize the real-time detection of fastener missing. The experimental results show that the average image processing time is 245.61msand the average correct recognition rate is 85.8ms.The method is self-adaptive and has the highest speed to support the implementation of 3.82m/s. It can meet the need of real-time detection of missing fastener.
【作者單位】: 蘭州交通大學自動化與電氣工程學院;蘭州工業(yè)學院電子信息工程學院;
【基金】:國家自然科學基金項目(61663022,61461023) 教育部創(chuàng)新團隊發(fā)展計劃(IRT_16R36) 甘肅省高原信息工程及控制重點實驗室開放課題基金(20161105)資助
【分類號】:TP391.41;U216.3
【相似文獻】
相關碩士學位論文 前6條
1 王昆;基于機器視覺的軌道幾何特征提取算法研究及實現[D];上海工程技術大學;2016年
2 殷超;基于機器視覺的軌道缺陷識別方法研究[D];蘭州交通大學;2016年
3 丁政開;基于機器視覺的鋼軌表面缺陷檢測技術研究[D];北京交通大學;2017年
4 孫麗麗;機器視覺與鐵路貨車超限監(jiān)測應用研究[D];西南交通大學;2005年
5 李冬;基于機器視覺的鋼軌磨耗檢測系統(tǒng)研究[D];南京航空航天大學;2013年
6 柴華;基于機器視覺的嵌入式鐵路異物侵限檢測系統(tǒng)研究[D];北京交通大學;2015年
,本文編號:2373136
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2373136.html