雙目立體視覺測距技術研究
[Abstract]:With the development of industry 4.0, intelligent robot with sensory elements has become an important factor to promote the development of modern industry. Binocular stereo vision is an important technique to realize robot automatic ranging. It is widely used in modern industry, such as robot navigation and positioning, three-dimensional space tracking and reconstruction, dynamic measurement of sheet metal forming. Limit curve detection and other fields. In recent years, the research of binocular stereo vision has made rapid progress, but there are still some problems to be solved better. These problems mainly focus on two aspects: one is how to further improve the accuracy of camera calibration, the other is how to balance the accuracy and speed of stereo matching. Therefore, this paper focuses on the camera calibration accuracy and stereo matching in binocular stereo vision. In order to improve the accuracy of camera calibration, the sub-pixel corner detection algorithm is partially improved in this paper. Based on the Harris corner detection algorithm, the pixel level corner is obtained. The position of sub-pixel corner is obtained by weighted grayscale gradient and binomial fitting. The experimental results show that the calibration accuracy of the camera is improved by this method. In order to improve the matching accuracy of binocular stereo vision and reduce the mismatch rate of the matching algorithm under disparity discontinuous region and noise interference, the stereo matching algorithm based on Census transform is selected in this paper. The main work includes the following three aspects: in the stage of Census transform, the average value of the eight neighborhood pixels in the transform window is calculated to replace the center pixel as the reference pixel to carry out the Census transform to improve the reliability of the matching cost of the single pixel; In the stage of cost aggregation, the block filter is applied to the cost aggregation to improve the matching speed. In the parallax matching stage, the quality of the final parallax map is improved by checking the left and right consistency of the rough parallax map, adjusting the discontinuity, and refining the sub-pixel. The experimental results show that the improved algorithm improves the parallax accuracy of low texture and parallax discontinuous regions, reduces the mismatch rate and computational complexity, improves the robustness of binocular vision, and maintains better real-time performance. The experimental results show that the binocular stereo ranging platform has high ranging accuracy and has great application potential in practical engineering.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前10條
1 林明盛;吳磊;柯科勇;;視覺測量中攝像機標定精度評估方法[J];機床與液壓;2016年23期
2 祝世平;閆利那;李政;;基于改進Census變換和動態(tài)規(guī)劃的立體匹配算法[J];光學學報;2016年04期
3 劉俊杰;謝春利;王娟;;棋盤格圖像角點坐標亞像素提取方法[J];華中科技大學學報(自然科學版);2015年S1期
4 沈彤;劉文波;王京;;基于雙目立體視覺的目標測距系統(tǒng)[J];電子測量技術;2015年04期
5 曹之樂;嚴中紅;王洪;;雙目立體視覺匹配技術綜述[J];重慶理工大學學報(自然科學);2015年02期
6 王軍政;朱華健;李靜;;一種基于Census變換的可變權值立體匹配算法[J];北京理工大學學報;2013年07期
7 汪珍珍;趙連玉;劉振忠;;基于MATLAB與OpenCV相結合的雙目立體視覺測距系統(tǒng)[J];天津理工大學學報;2013年01期
8 何應輝;蔡光程;黃曉昆;;改進的基于模板的角點檢測算法[J];云南民族大學學報(自然科學版);2010年04期
9 羅鈞;王蓮;侯艷;;攝像機標定的棋盤格亞像素角點檢測[J];重慶大學學報;2008年06期
10 劉陽成;朱楓;;一種新的棋盤格圖像角點檢測算法[J];中國圖象圖形學報;2006年05期
相關博士學位論文 前3條
1 胡漢平;雙目立體測距關鍵技術研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2014年
2 羅桂娥;雙目立體視覺深度感知與三維重建若干問題研究[D];中南大學;2012年
3 賴小波;機器人雙目立體視覺若干關鍵理論問題及其技術實現(xiàn)研究[D];浙江大學;2010年
相關碩士學位論文 前10條
1 周旺尉;基于自適應權重Census變換的立體匹配算法的研究及FPGA實現(xiàn)[D];浙江大學;2016年
2 丁歡歡;雙目立體視覺測距系統(tǒng)關鍵技術研究[D];電子科技大學;2015年
3 王帥;特征和區(qū)域匹配相結合的深度信息獲取方法研究[D];沈陽工業(yè)大學;2015年
4 龐星;雙目立體匹配的理論研究及算法優(yōu)化[D];南京理工大學;2015年
5 靳盼盼;雙目立體視覺測距技術研究[D];長安大學;2014年
6 舒娜;攝像機標定方法的研究[D];南京理工大學;2014年
7 邱河波;基于DSP的移動機器人雙目視覺技術研究[D];電子科技大學;2013年
8 王莎;基于特征的X線圖像拼接算法研究與實現(xiàn)[D];東北大學;2012年
9 何娟;攝像機標定中角點快速提取算法研究[D];國防科學技術大學;2011年
10 顧國慶;基于亞像素的特征提取關鍵技術研究與應用[D];江南大學;2011年
,本文編號:2372422
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2372422.html