基于機(jī)器視覺和握力波動的疲勞駕駛研究
[Abstract]:In 2010, the world had more than one billion vehicles, including 240 million in the United States and 78 million in China. With the rapid growth of vehicles, traffic accidents increase. Studies show that about 20% of these accidents are related to fatigue driving. At present, the research methods of driving fatigue detection are based on the use of visual signals and physiological signals such as EEG, ECG and eye electricity. Because of its non-contact, visual detection is still the mainstream. However, there are some shortcomings in the current research of visual detection, especially in complex environments, such as wearing glasses or changing light, the accuracy of traditional binary segmentation methods will be greatly reduced. Some literatures show that the change of grip strength is also one of the effective characteristics of measuring driving fatigue. Therefore, this paper proposes the fusion of visual signal and grip force signal to detect driving fatigue. The experimental results show that the fusion algorithm is more accurate than the single visual signal. The main work of this paper is as follows: (1) the building of simulated driving platform and fatigue driving detection system. In order to simulate the actual driving operation as truthfully as possible and ensure the validity of fatigue detection algorithm. The simulated steering wheel and pedals used in the hardware are almost the same as the real driving experience. The driving scene simulation system is designed to cover all kinds of weather and road conditions. On this basis, a fatigue driving detection system with camera and grip force detection is constructed. (2) the original signal of grip strength collected by pressure sensor is very limited. First, the original data must be converted and filtered. Among them, filtering adopts linear dynamic system model smoothing method which is better in real time. After preprocessing, the variance is selected as the grip force feature in the time domain feature of grip force. (3) face detector algorithm based on Cascade structure is studied in face location, and Adaboost algorithm based on Haar feature is used to make face location more accurate. All the visual processing algorithms, including Adaboost and the improved active shape model, are implemented in OPENCV based on Visual Studio2010. (4) after locating the face, the improved active shape model is used to search the 77 feature points of the face. Eye closure and mouth opening are defined by the aspect ratio of the feature points of the eye and mouth. Finally, the accuracy and robustness of the algorithm are verified by the testers with and without glasses. (5) A fatigue driving detection algorithm based on face and grip feature fusion is proposed. The fuzzy inference system is designed for eye closure, mouth opening and grip force variance. A lot of experiments have been done to adjust the fuzzy rules in the aspect of meeting the intersection and consistency of the rules. The effectiveness of the algorithm is proved by comparing and simulating the existing algorithms in MATLAB.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U463.6;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 劉志軍;張南;;主動形狀模型中的一種基于概率主成分分析的對應(yīng)點(diǎn)搜索方法[J];艦船科學(xué)技術(shù);2009年07期
2 白灝;張春燕;;改進(jìn)的主動形狀模型在植物葉形分類上的應(yīng)用(英文)[J];科學(xué)技術(shù)與工程;2012年12期
3 陳玉林,楚振升,李加春;全局紋理約束的主動性狀態(tài)模型[J];佳木斯大學(xué)學(xué)報(自然科學(xué)版);2005年03期
4 戈新良;楊杰;張?zhí)镪?杜春華;;改進(jìn)的主動形狀模型方法在人臉特征點(diǎn)定位中的應(yīng)用[J];上海交通大學(xué)學(xué)報;2007年08期
5 王君亭;吳小俊;王士同;楊靜宇;;基于ASM和FNN的人臉識別[J];江蘇科技大學(xué)學(xué)報(自然科學(xué)版);2007年04期
6 徐濤,蔡宇新;基于主動形狀模型實現(xiàn)醫(yī)學(xué)圖像中的物體(脊柱)定位(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2003年02期
7 ;[J];;年期
相關(guān)會議論文 前3條
1 許江濤;金立左;;人臉主動形狀模型的建立與分析[A];全國自動化新技術(shù)學(xué)術(shù)交流會會議論文集(一)[C];2005年
2 高淑欣;穆志純;袁立;徐曉娜;;基于主動形狀模型的人耳圖像歸一化研究[A];第十三屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2006年
3 岳安志;趙忠明;汪承義;;基于主動形狀模型的受電弓自動檢測方法[A];第十三屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 王宇慧;基于主動形狀模型的醫(yī)學(xué)圖像分割方法研究[D];西北大學(xué);2015年
2 趙莉;人臉遮擋的判別與分析[D];東南大學(xué);2016年
3 趙軍;基于機(jī)器視覺和握力波動的疲勞駕駛研究[D];東華大學(xué);2017年
4 戴瑋;主動形狀模型的研究與改進(jìn)[D];江南大學(xué);2009年
5 徐帥;基于主動形狀模型人臉識別算法的研究與實現(xiàn)[D];西南交通大學(xué);2011年
6 魏偉;基于主動形狀模型人臉識別算法的研究與實現(xiàn)[D];復(fù)旦大學(xué);2012年
7 徐f^冰;主動形狀模型的研究與應(yīng)用[D];江南大學(xué);2012年
8 魏東新;基于主動形狀模型的人臉特征提取的研究[D];大連理工大學(xué);2007年
9 蔡宇新;基于主動形狀模型(ASM)的醫(yī)學(xué)圖象中二維物體的定位方法探討[D];南京航空航天大學(xué);2003年
10 蔡樂毅;基于主動形狀模型的人臉識別算法的研究[D];浙江工業(yè)大學(xué);2013年
,本文編號:2363125
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2363125.html