基于隨機向量鏡像策略改進ART算法
發(fā)布時間:2018-11-27 07:41
【摘要】:針對現有的鏡像自適應隨機測試(MART)、動態(tài)鏡像自適應隨機測試(DMART)等算法通過鏡像函數生成的測試用例的隨機性不足,使其有效性在不同程度上有明顯下降的問題,提出基于隨機向量鏡像策略改進ART算法.首先將隨機向量引入傳統(tǒng)鏡像函數,增大鏡像測試用例間的差異性;然后將隨機向量鏡像函數運用到鏡像策略中,改進現有的ART算法.實驗結果表明,利用隨機向量鏡像策略可明顯地提高鏡像算法的有效性,并且該算法比傳統(tǒng)ART算法的效率有顯著提升.
[Abstract]:Aiming at the lack of randomness of the test cases generated by the existing image adaptive random test (MART),) dynamic mirror adaptive random test (DMART) algorithms by mirror function, the effectiveness of these algorithms is obviously reduced in different degrees. An improved ART algorithm based on random vector mirroring strategy is proposed. Firstly, the random vector is introduced into the traditional mirror function to increase the difference between the mirror test cases, and then the random vector image function is applied to the mirror strategy to improve the existing ART algorithm. The experimental results show that the effectiveness of the image algorithm can be improved obviously by using the random vector image strategy, and the efficiency of this algorithm is significantly improved than that of the traditional ART algorithm.
【作者單位】: 解放軍信息工程大學;數學工程與先進計算國家重點實驗室;
【基金】:國家自然科學基金(61402525) 鄭州市普通科技攻關項目(141PPTGG383)
【分類號】:TP301.6;TP311.53
本文編號:2359913
[Abstract]:Aiming at the lack of randomness of the test cases generated by the existing image adaptive random test (MART),) dynamic mirror adaptive random test (DMART) algorithms by mirror function, the effectiveness of these algorithms is obviously reduced in different degrees. An improved ART algorithm based on random vector mirroring strategy is proposed. Firstly, the random vector is introduced into the traditional mirror function to increase the difference between the mirror test cases, and then the random vector image function is applied to the mirror strategy to improve the existing ART algorithm. The experimental results show that the effectiveness of the image algorithm can be improved obviously by using the random vector image strategy, and the efficiency of this algorithm is significantly improved than that of the traditional ART algorithm.
【作者單位】: 解放軍信息工程大學;數學工程與先進計算國家重點實驗室;
【基金】:國家自然科學基金(61402525) 鄭州市普通科技攻關項目(141PPTGG383)
【分類號】:TP301.6;TP311.53
【相似文獻】
相關期刊論文 前6條
1 宗峰;;實例推理中的ART網絡應用[J];電腦知識與技術;2009年17期
2 林樺,王正光;ART網在地圖彩色分類中的應用[J];西安電子科技大學學報;1994年04期
3 劉芳;晏志勇;;基于ART的電子商務推薦系統(tǒng)的研究與實現[J];中國商貿;2009年07期
4 許令周;范宜仁;夏衛(wèi)芳;;ART算法中射線矩陣加權的BPT算法[J];計算物理;2011年05期
5 趙祥模;李娜;關可;宋煥生;;基于LTI射線追蹤的改進的ART算法[J];中國圖象圖形學報;2009年05期
6 常振興;楊立瑞;;多視角重建ART算法優(yōu)化研究[J];警察技術;2008年04期
,本文編號:2359913
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2359913.html