車牌圖像預(yù)處理與字符分割算法研究
[Abstract]:Automatic license plate recognition is an important module in intelligent transportation system, which generally includes the processing steps of license plate region extraction, license plate character segmentation, license plate character recognition and so on. The accuracy of character segmentation and recognition is low due to the influence of uneven illumination, shadow of characters, background texture and so on. Therefore, this paper puts forward the research topic of license plate character segmentation and its preprocessing technology, which has important application value to improve the accuracy and robustness of license plate automatic recognition system. The main work and contributions of this paper are as follows: based on the high density of vertical edge of license plate area and the similarity of adjacent gray pairs of edge points, a license plate level correction algorithm against background interference is proposed. First, through vertical edge density filtering, the nearest vertical edge is connected horizontally, and the license plate area block is obtained. According to the character height consistency and the gradual change of position, the effective character column is extracted. The least-square method is used to estimate the inclination angle of license plate area by fitting straight lines based on the midpoints of all character columns. Based on the fixed color pattern at the bottom of the license plate and the uniform width of the character stroke, an algorithm for judging the color pattern of the license plate is proposed, which can resist the interference of illumination and background texture. By analyzing the possible colors in the license plate area and using the characteristics of character width consistency, the color quantization histogram and morphological processing are used to judge the license plate with high color saturation and low saturation respectively. Based on the characteristics of fixed area and uniform color in the license plate area, an adaptive binarization method of license plate is proposed. First of all, the global threshold of Otsu is calculated. Based on the smooth change of illumination, the threshold of pixels with gray level approaching global threshold is obtained by weighting with local threshold of Bernsen to overcome the influence of uneven illumination. Then the proportion of foreground is used to determine whether it is necessary to choose k-means clustering method based on RGB color space to distinguish character shadow or non-license plate region, license plate background and character region. Based on the characteristics of uniform background color and fixed character arrangement, a method of horizontal license plate character segmentation against background interference is proposed. Firstly, the vertical projection of the binary image of the license plate is analyzed, and the left and right boundary is estimated by the consistency of the bottom color of the license plate, and the interval between the second and the third characters is found to provide the reference position for template matching. The variable length template is designed to slide on the vertical projection histogram and the maximum inter-class variance criterion is used to find the best matching parameter combined with the trough constraint. Finally the segmentation position is accurately adjusted according to the consistency of projection and character width. Finally, the simulation experiment of this algorithm is designed. For the existing data sets of 700 license plate images (including images with no interference, illumination, background area interference), the segmentation accuracy reaches 97.28, which shows that the proposed algorithm has good adaptability.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫學(xué)彬;莫林;張福元;凌文彪;;基于垂直線條密度質(zhì)心法的車牌傾斜校正[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年08期
2 顧弘;趙光宙;齊冬蓮;孫峗;張建良;;車牌識(shí)別中先驗(yàn)知識(shí)的嵌入及字符分割方法[J];中國圖象圖形學(xué)報(bào);2010年05期
3 童立靖;陳侃;付曉玲;段建勇;;文檔圖像二值化算法VFCM[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年13期
4 吳一全;丁堅(jiān);;基于邊緣點(diǎn)投影方差最小的車牌傾斜校正方法[J];系統(tǒng)仿真學(xué)報(bào);2008年21期
5 吳一全;丁堅(jiān);;基于K-L展開式的車牌傾斜校正方法[J];儀器儀表學(xué)報(bào);2008年08期
6 賈曉丹;李文舉;王海姣;;一種新的基于Radon變換的車牌傾斜校正方法[J];計(jì)算機(jī)工程與應(yīng)用;2008年03期
7 王興玲;;最大類間方差車牌字符分割的模板匹配算法[J];計(jì)算機(jī)工程;2006年19期
8 李文舉,梁德群,王新年,于東;質(zhì)量退化的車牌字符分割方法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2004年05期
9 郭大波,陳禮民,盧朝陽,韓麗萍;基于車牌底色識(shí)別的車牌定位方法[J];計(jì)算機(jī)工程與設(shè)計(jì);2003年05期
10 郝永杰,劉文耀,路爍;畸變汽車牌照?qǐng)D像的空間校正[J];西南交通大學(xué)學(xué)報(bào);2002年04期
相關(guān)碩士學(xué)位論文 前8條
1 王偉;車牌字符分割和字符識(shí)別的算法研究與實(shí)現(xiàn)[D];電子科技大學(xué);2011年
2 王琪;關(guān)于運(yùn)動(dòng)目標(biāo)特征提取以及車輛顏色識(shí)別算法的研究[D];電子科技大學(xué);2011年
3 羅輝武;實(shí)時(shí)車牌分割與識(shí)別技術(shù)研究[D];重慶大學(xué);2011年
4 姜周恩;車牌字符分割算法研究[D];遼寧師范大學(xué);2010年
5 王葉;車牌識(shí)別系統(tǒng)中字符切分和識(shí)別技術(shù)的研究[D];北京郵電大學(xué);2009年
6 馬騰飛;汽車牌照定位與字符分割算法的研究[D];山東科技大學(xué);2007年
7 黎婷婷;車牌識(shí)別圖像處理算法的研究與實(shí)現(xiàn)[D];武漢理工大學(xué);2007年
8 李晨;車牌識(shí)別技術(shù)的研究及其在智能交通系統(tǒng)中的應(yīng)用[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):2354076
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2354076.html