天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

車牌圖像預(yù)處理與字符分割算法研究

發(fā)布時(shí)間:2018-11-24 14:29
【摘要】:自動(dòng)車牌識(shí)別是智能交通系統(tǒng)中的重要模塊,一般包括車牌區(qū)域提取、車牌字符分割、車牌字符識(shí)別等處理步驟。由于受光照不均、字符陰影、背景紋理等干擾的影響,字符分割和識(shí)別的精度較低。因此,本文提出車牌字符分割及其預(yù)處理技術(shù)研究的課題,開展該項(xiàng)研究對(duì)提高車牌自動(dòng)識(shí)別系統(tǒng)的精確性和魯棒性有重要的應(yīng)用價(jià)值。本文主要工作和貢獻(xiàn)如下:基于車牌區(qū)域垂直邊緣高密度、邊緣點(diǎn)鄰域灰度對(duì)相似等特點(diǎn),提出了一種抗背景區(qū)域干擾的車牌水平校正算法。首先,通過垂直邊緣密度濾波、近鄰垂直邊緣水平連接,得到車牌區(qū)域塊,并根據(jù)字符高度一致性以及位置的漸變性,提取有效的字符列,然后,利用最小二乘法基于所有字符列中點(diǎn)擬合直線,估計(jì)出車牌區(qū)域傾斜角;谲嚺频最伾J椒N類固定、字符筆畫寬度一致的性質(zhì),提出了抗光照變化和背景紋理干擾的車牌顏色模式判斷算法。通過分析車牌區(qū)域可能出現(xiàn)的顏色并利用字符寬度一致性的特點(diǎn),對(duì)色彩飽和度高和飽和度低的車牌分別使用顏色量化直方圖和形態(tài)學(xué)處理的方法來判斷;谲嚺茀^(qū)域字符面積比例固定和顏色一致等特點(diǎn),構(gòu)建了一種自適應(yīng)的車牌二值化方法。首先,計(jì)算Otsu全局閾值,基于光照的平滑變化,通過與Bernsen局部閾值的加權(quán),得到灰度接近全局閾值的像素的閾值,來克服光照不均的影響,再通過前景所占比例判斷是否需要選用基于RGB顏色空間的k-means聚類方法來區(qū)分字符陰影或非車牌區(qū)域、車牌背景和字符區(qū)域;谲嚺频咨恢潞妥址帕蟹绞焦潭ǖ忍攸c(diǎn),提出了一種抗背景區(qū)域干擾的水平車牌字符分割方法。首先,對(duì)車牌二值圖垂直投影進(jìn)行波谷分析,利用車牌底色的一致性估計(jì)左右邊界,并找到第二、第三個(gè)字符之間的間隔位置,為模板匹配提供參考位置;設(shè)計(jì)變長模板,在垂直投影直方圖上滑動(dòng),結(jié)合波谷約束以最大類間方差準(zhǔn)則找到最佳匹配參數(shù),最后依據(jù)投影和字符寬度一致性進(jìn)行分割位置的精確調(diào)整。最后,設(shè)計(jì)了本文算法的仿真實(shí)驗(yàn)。對(duì)于現(xiàn)有700幅車牌圖像的數(shù)據(jù)集(包含無干擾和有光照影響、圖像背景區(qū)域干擾的圖像),分割準(zhǔn)確率達(dá)到了97.28%,表明本文提出算法具有較好的適應(yīng)性。
[Abstract]:Automatic license plate recognition is an important module in intelligent transportation system, which generally includes the processing steps of license plate region extraction, license plate character segmentation, license plate character recognition and so on. The accuracy of character segmentation and recognition is low due to the influence of uneven illumination, shadow of characters, background texture and so on. Therefore, this paper puts forward the research topic of license plate character segmentation and its preprocessing technology, which has important application value to improve the accuracy and robustness of license plate automatic recognition system. The main work and contributions of this paper are as follows: based on the high density of vertical edge of license plate area and the similarity of adjacent gray pairs of edge points, a license plate level correction algorithm against background interference is proposed. First, through vertical edge density filtering, the nearest vertical edge is connected horizontally, and the license plate area block is obtained. According to the character height consistency and the gradual change of position, the effective character column is extracted. The least-square method is used to estimate the inclination angle of license plate area by fitting straight lines based on the midpoints of all character columns. Based on the fixed color pattern at the bottom of the license plate and the uniform width of the character stroke, an algorithm for judging the color pattern of the license plate is proposed, which can resist the interference of illumination and background texture. By analyzing the possible colors in the license plate area and using the characteristics of character width consistency, the color quantization histogram and morphological processing are used to judge the license plate with high color saturation and low saturation respectively. Based on the characteristics of fixed area and uniform color in the license plate area, an adaptive binarization method of license plate is proposed. First of all, the global threshold of Otsu is calculated. Based on the smooth change of illumination, the threshold of pixels with gray level approaching global threshold is obtained by weighting with local threshold of Bernsen to overcome the influence of uneven illumination. Then the proportion of foreground is used to determine whether it is necessary to choose k-means clustering method based on RGB color space to distinguish character shadow or non-license plate region, license plate background and character region. Based on the characteristics of uniform background color and fixed character arrangement, a method of horizontal license plate character segmentation against background interference is proposed. Firstly, the vertical projection of the binary image of the license plate is analyzed, and the left and right boundary is estimated by the consistency of the bottom color of the license plate, and the interval between the second and the third characters is found to provide the reference position for template matching. The variable length template is designed to slide on the vertical projection histogram and the maximum inter-class variance criterion is used to find the best matching parameter combined with the trough constraint. Finally the segmentation position is accurately adjusted according to the consistency of projection and character width. Finally, the simulation experiment of this algorithm is designed. For the existing data sets of 700 license plate images (including images with no interference, illumination, background area interference), the segmentation accuracy reaches 97.28, which shows that the proposed algorithm has good adaptability.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫學(xué)彬;莫林;張福元;凌文彪;;基于垂直線條密度質(zhì)心法的車牌傾斜校正[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年08期

2 顧弘;趙光宙;齊冬蓮;孫峗;張建良;;車牌識(shí)別中先驗(yàn)知識(shí)的嵌入及字符分割方法[J];中國圖象圖形學(xué)報(bào);2010年05期

3 童立靖;陳侃;付曉玲;段建勇;;文檔圖像二值化算法VFCM[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年13期

4 吳一全;丁堅(jiān);;基于邊緣點(diǎn)投影方差最小的車牌傾斜校正方法[J];系統(tǒng)仿真學(xué)報(bào);2008年21期

5 吳一全;丁堅(jiān);;基于K-L展開式的車牌傾斜校正方法[J];儀器儀表學(xué)報(bào);2008年08期

6 賈曉丹;李文舉;王海姣;;一種新的基于Radon變換的車牌傾斜校正方法[J];計(jì)算機(jī)工程與應(yīng)用;2008年03期

7 王興玲;;最大類間方差車牌字符分割的模板匹配算法[J];計(jì)算機(jī)工程;2006年19期

8 李文舉,梁德群,王新年,于東;質(zhì)量退化的車牌字符分割方法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2004年05期

9 郭大波,陳禮民,盧朝陽,韓麗萍;基于車牌底色識(shí)別的車牌定位方法[J];計(jì)算機(jī)工程與設(shè)計(jì);2003年05期

10 郝永杰,劉文耀,路爍;畸變汽車牌照?qǐng)D像的空間校正[J];西南交通大學(xué)學(xué)報(bào);2002年04期

相關(guān)碩士學(xué)位論文 前8條

1 王偉;車牌字符分割和字符識(shí)別的算法研究與實(shí)現(xiàn)[D];電子科技大學(xué);2011年

2 王琪;關(guān)于運(yùn)動(dòng)目標(biāo)特征提取以及車輛顏色識(shí)別算法的研究[D];電子科技大學(xué);2011年

3 羅輝武;實(shí)時(shí)車牌分割與識(shí)別技術(shù)研究[D];重慶大學(xué);2011年

4 姜周恩;車牌字符分割算法研究[D];遼寧師范大學(xué);2010年

5 王葉;車牌識(shí)別系統(tǒng)中字符切分和識(shí)別技術(shù)的研究[D];北京郵電大學(xué);2009年

6 馬騰飛;汽車牌照定位與字符分割算法的研究[D];山東科技大學(xué);2007年

7 黎婷婷;車牌識(shí)別圖像處理算法的研究與實(shí)現(xiàn)[D];武漢理工大學(xué);2007年

8 李晨;車牌識(shí)別技術(shù)的研究及其在智能交通系統(tǒng)中的應(yīng)用[D];西北工業(yè)大學(xué);2006年

,

本文編號(hào):2354076

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2354076.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6a1d6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com