天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于MultiClass-SVM的多核函數(shù)學(xué)習(xí)在人臉表情識(shí)別中應(yīng)用

發(fā)布時(shí)間:2018-11-24 13:42
【摘要】:近年來,人臉表情識(shí)別在社交網(wǎng)絡(luò)和人機(jī)交互領(lǐng)域越來越引起學(xué)術(shù)界的重視和關(guān)注,并且已經(jīng)取得了一系列的成果,F(xiàn)有數(shù)據(jù)庫(kù)中人臉大多角度端正、分辨率高并且環(huán)境光照良好,并且現(xiàn)有的算法均基于以上數(shù)據(jù)庫(kù)設(shè)計(jì)。而真實(shí)世界中的人臉更具有多變性,因此現(xiàn)有的算法很難滿足于實(shí)際需求。為測(cè)試現(xiàn)有算法的性能,本文探索了一些影響真實(shí)生活場(chǎng)景中笑臉檢測(cè)的因素,包括光照預(yù)處理方法、對(duì)齊、圖像尺寸、特征以及SVM分類器核的選取。根據(jù)數(shù)據(jù)本文驗(yàn)證了現(xiàn)有光照處理方法的局限性,對(duì)齊作用的實(shí)用性以分類器的核的性能等。同時(shí)為了驗(yàn)證多表情分類問題,本文通過互聯(lián)網(wǎng)搜集并建立了一個(gè)有將近3萬張人臉圖像的數(shù)據(jù)庫(kù),Real-world Affective Face Database(RAF-DB),其中每一張人臉圖像的標(biāo)簽都是被大概40位志愿者進(jìn)行獨(dú)立標(biāo)注。為了測(cè)試本文建立的RAF-DB數(shù)據(jù)庫(kù)的性能,引入了CK數(shù)據(jù)庫(kù)進(jìn)行對(duì)比,通過交叉訓(xùn)練,實(shí)驗(yàn)結(jié)果表明經(jīng)過RAF-DB訓(xùn)練在CK數(shù)據(jù)庫(kù)測(cè)試的數(shù)據(jù)結(jié)果的識(shí)別率基本上都高十在CK數(shù)據(jù)庫(kù)訓(xùn)練在RAF-DB數(shù)據(jù)庫(kù)測(cè)試的結(jié)果。搜集的數(shù)據(jù)庫(kù)表明人臉表情識(shí)別任務(wù)是一個(gè)典型的非均勻多標(biāo)簽的分類問題,為了解決上述問題,本文在訓(xùn)練時(shí),通過上采樣問題進(jìn)行了數(shù)據(jù)重構(gòu),同時(shí)也探究了多標(biāo)簽的影響,試驗(yàn)結(jié)果表明,這對(duì)識(shí)別率的提高非常明顯。在特征選取方面,除了利用比較成熟的人臉表情特征(HOG,Gabor,LBP)作對(duì)比外,還引入了深度學(xué)習(xí)的特征。對(duì)于不同數(shù)據(jù)庫(kù)以及分類任務(wù),不同的SVM核的性能差異也非常明顯,因此本文分類器的訓(xùn)練采用了多核SVM分類器,包括線性核、高斯核以及局部線性核(OCC)。試驗(yàn)結(jié)果表明,多核SVM在表情分類問題上具有更強(qiáng)的穩(wěn)定性和更高的準(zhǔn)確率。
[Abstract]:In recent years, facial expression recognition has attracted more and more attention in the field of social network and human-computer interaction, and has made a series of achievements. In the existing database, the human face is large and multi-angle correct, the resolution is high and the environment illumination is good, and the existing algorithms are based on the above database design. In the real world, human faces are more variable, so the existing algorithms are difficult to meet the actual needs. In order to test the performance of the existing algorithms, this paper explores some factors that affect the detection of smiling faces in real life scenes, including illumination preprocessing, alignment, image size, features and the selection of SVM classifier cores. According to the data, this paper verifies the limitation of existing illumination processing methods and the practicability of alignment to the performance of classifier kernel. At the same time, in order to verify the problem of multi-expression classification, this paper collects and builds a database of nearly 30, 000 face images via the Internet, Real-world Affective Face Database (RAF-DB). Each face image was labeled independently by about 40 volunteers. In order to test the performance of the RAF-DB database established in this paper, the CK database is introduced and compared. The experimental results show that the recognition rate of the data tested in the CK database after RAF-DB training is almost higher than that in the CK database training in the RAF-DB database. The database collected shows that the task of facial expression recognition is a typical non-uniform multi-label classification problem. At the same time, the influence of multi-label is also discussed. The experimental results show that the recognition rate is improved obviously. In feature selection, in addition to using more mature facial expression features (HOG,Gabor,LBP) for comparison, in-depth learning features are also introduced. For different databases and classification tasks, the performance of different SVM kernels is also very different. Therefore, the training of the classifier in this paper uses multi-core SVM classifier, including linear kernel, Gao Si kernel and local linear kernel (OCC). The experimental results show that multicore SVM is more stable and accurate in facial expression classification.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41

【參考文獻(xiàn)】

相關(guān)碩士學(xué)位論文 前1條

1 孫雯玉;人臉表情識(shí)別算法研究[D];北京交通大學(xué);2006年

,

本文編號(hào):2353939

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2353939.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c8d78***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
香蕉网尹人综合在线观看| 91亚洲国产—区=区a| 日韩中文字幕狠狠人妻| 美国黑人一级黄色大片| 国产av乱了乱了一区二区三区| 可以在线看的欧美黄片| 午夜国产成人福利视频| 欧美熟妇喷浆一区二区| 好吊日视频这里都是精品| 神马午夜福利一区二区| 亚洲精品欧美精品一区三区| 空之色水之色在线播放| 国产精品日本女优在线观看| 欧美韩国日本精品在线| 成年人视频日本大香蕉久久| 日韩不卡一区二区在线| 美女激情免费在线观看| 婷婷色香五月综合激激情| 亚洲精品蜜桃在线观看| 日韩精品毛片视频免费看| 午夜精品一区二区av| 亚洲最大的中文字幕在线视频| 国产三级不卡在线观看视频| 日韩在线欧美一区二区| 国产传媒欧美日韩成人精品| 日韩综合国产欧美一区| 久热青青草视频在线观看| 神马午夜福利免费视频| 国产日产欧美精品大秀| 国产精品一区二区成人在线| 国产成人一区二区三区久久| 亚洲成人黄色一级大片| 99国产高清不卡视频| 亚洲一区二区精品久久av| 久久精品亚洲精品一区| 欧美人妻一区二区三区| 偷拍美女洗澡免费视频| 国产又粗又爽又猛又黄的 | 国产精欧美一区二区三区久久| 高清国产日韩欧美熟女| 日本黄色高清视频久久|