針對西夏文字識別的特征提取及分類器研究
[Abstract]:Character recognition is a traditional subject in the field of machine recognition, and many research achievements have been made. The recognition of Chinese characters and ancient characters is an important research topic in the field of Chinese information processing. The research results of machine recognition have been commercialized and widely used in face recognition, fingerprint recognition, license plate recognition, office automation and financial and commercial affairs. Although there are many difficulties in character recognition, because Chinese characters are very important in practical application and have great significance in theoretical research, there are still many researches on this aspect. The recognition of Xixia characters belongs to a new field to be developed at present. According to the research, there are many difficulties in the research on the recognition of Xixia characters based on the form of Chinese characters. First, the ancient Xixia language has more than 6000 words, so it belongs to the large character set; Second, compared with Chinese characters, Xixia characters have more complex structure and complicated strokes, and most of them are more than 14 strokes, so the Xixia characters are character sets with high similarity. Third, most of the handwritten Xixia characters have different sizes and lattice, which makes it more difficult and more complex to recognize the Xixia characters. The most important work in the digitization of ancient characters is the machine recognition of ancient characters, and the feature extraction in character recognition is the basis of the study of character recognition. Therefore, this paper mainly introduces the algorithm and process of feature extraction in the Xixia language. This paper first introduces the significance of the research on the recognition of the Xixia language and the current research situation at home and abroad, and then preprocesses the Xixia text image, including normalization, binarization, smoothing, thinning, tilting correction, etc. Then haar-like algorithm and Gabor wavelet algorithm are adopted to extract the features of the Xixia character image. Finally, the AdaBoost algorithm is used to classify and recognize the extracted features. The results of feature extraction using single haar-like algorithm and Gabor wavelet algorithm are compared, and good classification and recognition results are obtained.
【學位授予單位】:寧夏大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.43
【參考文獻】
相關期刊論文 前10條
1 魏淑霞;;“北方民族文字數(shù)字化與西夏文獻研究國際研討會”綜述[J];西夏研究;2016年04期
2 李曉聰;涂剛毅;裴江;吳少鵬;;基于改進Hough變換的檢測前跟蹤算法[J];現(xiàn)代防御技術;2016年05期
3 許鵬;韓小忙;;西夏語詞匯研究述論[J];西夏研究;2016年03期
4 楊新武;馬壯;袁順;;基于弱分類器調(diào)整的多分類Adaboost算法[J];電子與信息學報;2016年02期
5 顏學龍;任文帥;馬峻;;基于擴展Haar特征的AdaBoost人臉檢測算法[J];計算機系統(tǒng)應用;2015年09期
6 王海;蔡英鳳;袁朝春;;基于多模式弱分類器的AdaBoost-Bagging車輛檢測算法[J];交通運輸工程學報;2015年02期
7 王慶偉;應自爐;;一種基于Haar-Like T特征的人臉檢測算法[J];模式識別與人工智能;2015年01期
8 江偉堅;郭躬德;賴智銘;;基于新Haar-like特征的Adaboost人臉檢測算法[J];山東大學學報(工學版);2014年02期
9 許劍;張洪偉;;Adaboost算法分類器設計及其應用[J];四川理工學院學報(自然科學版);2014年01期
10 霍艷娟;;西夏語言研究簡論[J];寧夏社會科學;2013年06期
相關會議論文 前1條
1 張平;王貴成;;Adaboost人臉檢測算法的速度影響因素分析及其改進方法[A];第三屆中國智能計算大會論文集[C];2009年
相關博士學位論文 前2條
1 何飛;基于Gabor濾波的虹膜多特征提取及融合識別方法研究[D];吉林大學;2015年
2 許亞美;手寫維吾爾文字識別若干關鍵技術研究[D];西安電子科技大學;2014年
相關碩士學位論文 前10條
1 劉雨心;基于筆畫的脫機手寫體漢字識別與研究[D];太原理工大學;2014年
2 齊光景;基于fast-AdaBoost算法的人臉檢測與識別方法研究[D];太原理工大學;2014年
3 白瑩;手寫漢字的細化算法研究[D];西安電子科技大學;2014年
4 盧婷;基于AdaBoost的分類器學習算法比較研究[D];華東理工大學;2014年
5 孫抒雨;基于Gabor特征的人臉識別算法研究[D];遼寧科技大學;2012年
6 姜文;維吾爾文單字符Gabor特征提取與識別[D];西安電子科技大學;2012年
7 陳亮;Gabor小波特征提取技術及其在目標識別中的應用研究[D];南京理工大學;2009年
8 楊全銀;基于Hough變換的圖像形狀特征檢測[D];山東大學;2009年
9 趙萬鵬;基于Adaboost算法的數(shù)字識別技術的研究與應用[D];中國科學院研究生院(成都計算機應用研究所);2006年
10 陳洪波;Hough變換及改進算法與線段檢測[D];廣西師范大學;2004年
,本文編號:2342050
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2342050.html