針對(duì)稀疏性的協(xié)同過(guò)濾優(yōu)化算法研究
[Abstract]:Collaborative filtering is the most popular and successful recommendation algorithm in recommendation systems. Based on the idea of group intelligence, it selects the nearest neighbor users for the target users and recommends them for the target users according to their preferences. Collaborative filtering algorithm not only helps users solve the problem of "information overload", but also suffers from many problems. The problem of sparsity is the most important problem. Due to the inaccuracy of similarity calculation and neighbor selection due to the excessive sparsity of score data, the accuracy of recommendation results is affected, and the credibility of recommendation results is also greatly reduced. In this paper, the sparsity of collaborative filtering is studied in depth, and three optimized collaborative filtering algorithms are proposed. (1) based on the prediction value and the user / item average absolute error (Mean Absolute Error,), the following three optimized collaborative filtering algorithms are proposed. MAE) value filling optimization algorithm. The MAE value of each user / item is calculated, and the vacant value in the rating matrix is filled with the predicted value and the MAE value according to the fill rule. The cooperative filtering algorithm is implemented using the filled rating matrix. This algorithm ensures that the filling value is close to the average value of each user, which not only ensures that the prediction results can meet the individual scoring habits of different users, but also improves the accuracy of recommendation. (2) an optimization algorithm based on item clustering is proposed. Based on the clustering of the item columns of the original matrix, two more dense "user-class" matrices are constructed, and the two kinds of similarity of users are calculated according to the clustering results. The obtained similarity is linearly weighted and the modified coefficient is used as the final similarity to recommend. The algorithm computes the similarity on a denser matrix, which makes the recommendation result more reliable. At the same time, the efficiency of the algorithm is also improved because of the reduction of matrix size. (3) an optimization algorithm based on trust network is proposed. Trust relationship is introduced into collaborative filtering. A trust network is built using common ratings and delivery rules among users. The trust degree of the trust network is linearly weighted to the traditional user similarity, and the ungraded items are predicted. The algorithm is based on the preferences of the users trusted by the target users. The results are not only more reliable than the traditional recommendation based on neighbors, but also improve the recommendation accuracy to a certain extent. The effectiveness and feasibility of the proposed algorithm are proved by a large number of comparative experiments.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;陳春明;徐云青;;一種基于分類的協(xié)同過(guò)濾算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2007年01期
2 楊風(fēng)召;;一種基于特征表的協(xié)同過(guò)濾算法[J];計(jì)算機(jī)工程與應(yīng)用;2007年06期
3 王嵐;翟正軍;;基于時(shí)間加權(quán)的協(xié)同過(guò)濾算法[J];計(jì)算機(jī)應(yīng)用;2007年09期
4 曾子明;張李義;;基于多屬性決策和協(xié)同過(guò)濾的智能導(dǎo)購(gòu)系統(tǒng)[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2008年02期
5 張富國(guó);;用戶多興趣下基于信任的協(xié)同過(guò)濾算法研究[J];小型微型計(jì)算機(jī)系統(tǒng);2008年08期
6 侯翠琴;焦李成;張文革;;一種壓縮稀疏用戶評(píng)分矩陣的協(xié)同過(guò)濾算法[J];西安電子科技大學(xué)學(xué)報(bào);2009年04期
7 廖新考;;基于用戶特征和項(xiàng)目屬性的混合協(xié)同過(guò)濾推薦[J];福建電腦;2010年07期
8 沈磊;周一民;李舟軍;;基于心理學(xué)模型的協(xié)同過(guò)濾推薦方法[J];計(jì)算機(jī)工程;2010年20期
9 徐紅;彭黎;郭艾寅;徐云劍;;基于用戶多興趣的協(xié)同過(guò)濾策略改進(jìn)研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年04期
10 焦晨斌;王世卿;;基于模型填充的混合協(xié)同過(guò)濾算法[J];微計(jì)算機(jī)信息;2011年11期
相關(guān)會(huì)議論文 前10條
1 沈杰峰;杜亞軍;唐俊;;一種基于項(xiàng)目分類的協(xié)同過(guò)濾算法[A];第二十二屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2005年
2 周軍鋒;湯顯;郭景峰;;一種優(yōu)化的協(xié)同過(guò)濾推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2004年
3 董全德;;基于雙信息源的協(xié)同過(guò)濾算法研究[A];全國(guó)第20屆計(jì)算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議(CACIS·2009)暨全國(guó)第1屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2009年
4 張光衛(wèi);康建初;李鶴松;劉常昱;李德毅;;面向場(chǎng)景的協(xié)同過(guò)濾推薦算法[A];中國(guó)系統(tǒng)仿真學(xué)會(huì)第五次全國(guó)會(huì)員代表大會(huì)暨2006年全國(guó)學(xué)術(shù)年會(huì)論文集[C];2006年
5 李建國(guó);姚良超;湯庸;郭歡;;基于認(rèn)知度的協(xié)同過(guò)濾推薦算法[A];第26屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(B輯)[C];2009年
6 王明文;陶紅亮;熊小勇;;雙向聚類迭代的協(xié)同過(guò)濾推薦算法[A];第三屆全國(guó)信息檢索與內(nèi)容安全學(xué)術(shù)會(huì)議論文集[C];2007年
7 胡必云;李舟軍;王君;;基于心理測(cè)量學(xué)的協(xié)同過(guò)濾相似度方法(英文)[A];NDBC2010第27屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(B輯)[C];2010年
8 林麗冰;師瑞峰;周一民;李月雷;;基于雙聚類的協(xié)同過(guò)濾推薦算法[A];2008'中國(guó)信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(一)[C];2008年
9 羅喜軍;王韜丞;杜小勇;劉紅巖;何軍;;基于類別的推薦——一種解決協(xié)同推薦中冷啟動(dòng)問(wèn)題的方法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2007年
10 黃創(chuàng)光;印鑒;汪靜;劉玉葆;王甲海;;不確定近鄰的協(xié)同過(guò)濾推薦算法[A];NDBC2010第27屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集A輯一[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 紀(jì)科;融合上下文信息的混合協(xié)同過(guò)濾推薦算法研究[D];北京交通大學(xué);2016年
2 程殿虎;基于協(xié)同過(guò)濾的社會(huì)網(wǎng)絡(luò)推薦系統(tǒng)關(guān)鍵技術(shù)研究[D];中國(guó)海洋大學(xué);2015年
3 于程遠(yuǎn);基于QoS的Web服務(wù)推薦技術(shù)研究[D];上海交通大學(xué);2015年
4 段銳;融合文本內(nèi)容與情境信息的協(xié)同過(guò)濾推薦方法研究[D];合肥工業(yè)大學(xué);2017年
5 李聰;電子商務(wù)推薦系統(tǒng)中協(xié)同過(guò)濾瓶頸問(wèn)題研究[D];合肥工業(yè)大學(xué);2009年
6 郭艷紅;推薦系統(tǒng)的協(xié)同過(guò)濾算法與應(yīng)用研究[D];大連理工大學(xué);2008年
7 羅恒;基于協(xié)同過(guò)濾視角的受限玻爾茲曼機(jī)研究[D];上海交通大學(xué);2011年
8 薛福亮;電子商務(wù)協(xié)同過(guò)濾推薦質(zhì)量影響因素及其改進(jìn)機(jī)制研究[D];天津大學(xué);2012年
9 高e,
本文編號(hào):2321267
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2321267.html