天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于用戶偏好與商品屬性情感匹配的圖書個(gè)性化推薦研究

發(fā)布時(shí)間:2018-11-07 17:57
【摘要】:【目的】識(shí)別并獲取細(xì)粒度的用戶偏好信息,優(yōu)化圖書個(gè)性化推薦的效果!痉椒ā渴褂们楦蟹治龇椒▽(duì)用戶圖書評(píng)論進(jìn)行屬性層文本挖掘,通過用戶本身的圖書評(píng)論獲取用戶對(duì)圖書屬性的偏好;基于每本圖書的所有評(píng)論的情感計(jì)算獲得其屬性評(píng)分;將用戶偏好矩陣、圖書屬性得分矩陣進(jìn)行匹配,從而實(shí)現(xiàn)用戶對(duì)圖書屬性情感偏好的個(gè)性化推薦!窘Y(jié)果】利用亞馬遜圖書評(píng)論數(shù)據(jù)作為數(shù)據(jù)來源分別對(duì)傳統(tǒng)的協(xié)同過濾方法與本文提出的推薦方法進(jìn)行實(shí)驗(yàn)對(duì)比。結(jié)果表明,本文提出的方法在準(zhǔn)確性、召回率、覆蓋率上分別提高了0.030、0.097、0.2812!揪窒蕖课纯紤]時(shí)間因素對(duì)用戶偏好的影響,并且屬性類型的全面程度受亞馬遜圖書評(píng)論數(shù)量和質(zhì)量的限制!窘Y(jié)論】本文計(jì)算用戶對(duì)圖書屬性的情感得分,得到細(xì)粒度的用戶偏好信息,并通過與圖書屬性的得分進(jìn)行匹配,提升了圖書個(gè)性化推薦的效果。
[Abstract]:[objective] to identify and obtain fine-grained user preference information and optimize the effect of personalized book recommendation. The user's preference for the book attribute is obtained through the user's own book review. The attribute score was obtained based on the emotional calculation of all the comments in each book; Matching user preference matrix, book attribute score matrix, [results] the traditional collaborative filtering method is used as the data source to compare the traditional collaborative filtering method with the recommendation method proposed in this paper. [results] using Amazon book review data as the data source, we can make a comparison between the traditional collaborative filtering method and the recommendation method proposed in this paper. The results show that the accuracy, recall rate and coverage rate of the proposed method are increased by 0.030 / 0.097 / 0.2812 respectively. [limitation] the influence of time factors on user preference is not considered. And the comprehensive degree of attribute type is limited by the quantity and quality of Amazon book review. [conclusion] this paper calculates the user's emotion score to the book attribute, and obtains the fine granularity user preference information. And by matching with the score of book attributes, the effect of personalized book recommendation is improved.
【作者單位】: 華中師范大學(xué)信息管理學(xué)院;華中師范大學(xué)青少年網(wǎng)絡(luò)心理與行為教育部重點(diǎn)實(shí)驗(yàn)室;
【基金】:國家自然科學(xué)基金項(xiàng)目“基于用戶偏好感知的Saa S服務(wù)選擇優(yōu)化研究”(項(xiàng)目編號(hào):71271099),國家自然科學(xué)基金項(xiàng)目“基于屏幕視覺熱區(qū)的網(wǎng)絡(luò)用戶偏好提取及交互式個(gè)性化推薦研究”(項(xiàng)目編號(hào):71571084)的研究成果之一
【分類號(hào)】:TP391.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前2條

1 彭解矛;黃錦悅;;商業(yè)MIS中的商品屬性[J];信息與電腦;2001年12期

2 萬志超;王亞杰;;基于商品屬性的消費(fèi)者個(gè)性化偏好模型研究[J];北京郵電大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2013年05期

相關(guān)碩士學(xué)位論文 前3條

1 牛曉靜;面向商品評(píng)論的觀點(diǎn)挖掘方法研究[D];杭州電子科技大學(xué);2016年

2 吳桐;商品評(píng)論的摘要提取研究[D];北京郵電大學(xué);2015年

3 褚劍峰;電商和微博評(píng)論中商品屬性與傾向性識(shí)別技術(shù)的研究與實(shí)現(xiàn)[D];東華大學(xué);2014年

,

本文編號(hào):2317128

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2317128.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8f913***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com