天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

脆弱好友檢測(cè)模型的研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-11-06 20:31
【摘要】:隨著Web 2.0時(shí)代的到來,用戶被在線社交網(wǎng)絡(luò)(Online Social Networks,OSNs)呈現(xiàn)出的“低門檻、高開放性”等特點(diǎn)所吸引,參與意識(shí)也被無(wú)限激發(fā)。作為信息生產(chǎn)者,用戶為社交網(wǎng)絡(luò)提供了大量的信息,包括用戶個(gè)人信息(Personal Preference Profiles,PPPs)和用戶原創(chuàng)內(nèi)容(User Generated Contents,UGCs)。在社交網(wǎng)絡(luò)的大數(shù)據(jù)環(huán)境下,這些碎片化的信息將被整合利用。然而,用戶個(gè)人信息和用戶原創(chuàng)內(nèi)容往往會(huì)涉及到用戶的隱私,而大數(shù)據(jù)的挖掘能力恰恰威脅到了用戶的隱私保護(hù)。從根本上來說,隱私泄露源自于用戶以及他所處社交圈的脆弱性,具體體現(xiàn)為用戶自身隱私保護(hù)意識(shí)的薄弱和社交圈中用戶好友的隱私傳播行為及其惡劣影響。尤其是作為信息傳播過程中強(qiáng)有力的推動(dòng)者,用戶好友沒有充分意識(shí)到自己在隱私信息泄露中所扮演的威脅性角色。因此,研究用戶好友在隱私信息傳播過程中的影響作用,對(duì)于從根本上保護(hù)用戶隱私有著至關(guān)重要的意義。本論文在總結(jié)現(xiàn)有的研究成果的基礎(chǔ)上,首次提出了傳播脆弱性的概念,并綜合考慮了用戶好友的傳播脆弱性在各個(gè)方面對(duì)隱私保護(hù)的影響,結(jié)合動(dòng)態(tài)隱私信息傳播的特性,構(gòu)建了隱私接收擴(kuò)散模型(Privacy Receiving-Disseminating Model,PRD)并實(shí)現(xiàn)了相應(yīng)的最終擴(kuò)散圈(Ultimate Circle of Disseminating,UCD)迭代算法,從嶄新的視角,即動(dòng)態(tài)隱私信息的傳播過程,去評(píng)估用戶好友的傳播脆弱性,最終研究并實(shí)現(xiàn)了一個(gè)新穎的脆弱好友檢測(cè)模型(Vulnerable Friend Identification Model,VFI)。VFI 模型能夠幫助用戶從眾多直接好友中識(shí)別出脆弱好友,認(rèn)清他所處社交圈的脆弱性,并通過解除好友關(guān)系等措施保護(hù)用戶的個(gè)人隱私安全。論文首先介紹了社交網(wǎng)絡(luò)中隱私保護(hù)問題的研究現(xiàn)狀和相關(guān)技術(shù);之后整體闡述了基于動(dòng)態(tài)隱私信息傳播過程的脆弱好友檢測(cè)方案的研究與設(shè)計(jì);接下來詳細(xì)描述了方案中各個(gè)模塊的具體設(shè)計(jì)與實(shí)現(xiàn),包括傳播脆弱性量化模塊、隱私接收擴(kuò)散模塊、以及脆弱好友檢測(cè)模塊;并利用Facebook和Twitter的真實(shí)數(shù)據(jù)驗(yàn)證了 VFI模型的有效性及其優(yōu)良性能;最后總結(jié)全文,對(duì)未來工作進(jìn)行了展望,并總結(jié)了作者在研究生期間的工作和成果。
[Abstract]:With the arrival of the Web 2.0 era, users are attracted by the features of "low threshold, high openness" presented by (Online Social Networks,OSNs (online social network), and the consciousness of participation is aroused indefinitely. As an information producer, users provide a large amount of information for social networks, including user personal information (Personal Preference Profiles,PPPs) and user-generated content (User Generated Contents,UGCs). In the social network big data environment, these pieces of information will be integrated into the use of. However, user's personal information and user-generated content often involve user's privacy, and big data's mining ability just threatens the user's privacy protection. Especially as a powerful promoter in the process of information dissemination, users' friends are not fully aware of their threatening role in the disclosure of privacy information. Therefore, it is very important to study the influence of user friends in the process of privacy information dissemination. On the basis of summarizing the existing research results, this paper puts forward the concept of communication vulnerability for the first time, and synthetically considers the impact of the communication vulnerability of user friends on privacy protection in all aspects, combining with the characteristics of dynamic privacy information dissemination. The privacy receiving diffusion model (Privacy Receiving-Disseminating Model,PRD) is constructed and the corresponding iterative algorithm of the final diffusion circle (Ultimate Circle of Disseminating,UCD is implemented. From a new perspective, the propagation process of dynamic privacy information is introduced. Finally, a novel fragile friend detection model, (Vulnerable Friend Identification Model,VFI). VFI model, is developed to help users identify vulnerable friends from a large number of direct friends. Recognize the vulnerability of his social circle and protect the privacy of the user through such measures as breaking off his friends. Firstly, this paper introduces the research status and related technologies of privacy protection in social networks, and then describes the research and design of fragile friend detection scheme based on dynamic privacy information dissemination process. Then, the detailed design and implementation of each module in the scheme are described in detail, including the dissemination vulnerability quantification module, the privacy receiving diffusion module and the fragile friend detection module. The validity of the VFI model and its excellent performance are verified by using the real data of Facebook and Twitter. Finally, the paper summarizes the full text, looks forward to the future work, and summarizes the author's work and achievements during the post-graduate period.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP393.09;TP309

【參考文獻(xiàn)】

相關(guān)碩士學(xué)位論文 前1條

1 黎雷;社會(huì)網(wǎng)絡(luò)影響力模型及其算法研究[D];北京交通大學(xué);2010年



本文編號(hào):2315388

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2315388.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶eb5e0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com