快速識別密度骨架的聚類算法
發(fā)布時間:2018-11-02 16:24
【摘要】:針對如何快速尋找密度骨架、提高高維數(shù)據(jù)聚類準(zhǔn)確性的問題,提出一種快速識別高密度骨架的聚類(ECLUB)算法。首先,在定義了對象局部密度的基礎(chǔ)上,根據(jù)互k近鄰一致性及近鄰點局部密度關(guān)系,快速識別出高密度骨架;然后,對未分配的低密度點依據(jù)鄰近關(guān)系進(jìn)行劃分,得到最終聚類。人工合成數(shù)據(jù)集及真實數(shù)據(jù)集上的實驗驗證了所提算法的有效性,在Olivetti Face數(shù)據(jù)集上的聚類結(jié)果顯示,ECLUB算法的調(diào)整蘭德系數(shù)(ARI)和歸一化互信息(NMI)分別為0.877 9和0.962 2。與經(jīng)典的基于密度的聚類算法(DBSCAN)、密度中心聚類算法(CFDP)以及密度骨架聚類算法(CLUB)相比,所提ECLUB算法效率更高,且對于高維數(shù)據(jù)聚類準(zhǔn)確率更高。
[Abstract]:To solve the problem of how to find density skeleton quickly and improve the accuracy of high dimensional data clustering, a fast clustering (ECLUB) algorithm for high density skeleton recognition is proposed. Firstly, based on the definition of the local density of the object, the high density skeleton is quickly identified according to the mutual k-nearest neighbor consistency and the local density relation of the nearest neighbor. Then, the unallocated low density points are divided according to the neighborhood relationship, and the final clustering is obtained. Experiments on synthetic data sets and real data sets verify the effectiveness of the proposed algorithm. The clustering results on Olivetti Face datasets show that, The adjusted Rand coefficient (ARI) and normalized mutual information (NMI) of ECLUB algorithm are 0.877 9 and 0.962 2 respectively. Compared with the classical density-based clustering algorithm (DBSCAN), density center clustering algorithm (CFDP) and density skeleton clustering algorithm (CLUB), the proposed ECLUB algorithm is more efficient and accurate for high-dimensional data clustering.
【作者單位】: 鄭州大學(xué)信息工程學(xué)院;
【基金】:河南省基礎(chǔ)與前沿基金資助項目(152300410191)~~
【分類號】:TP311.13
[Abstract]:To solve the problem of how to find density skeleton quickly and improve the accuracy of high dimensional data clustering, a fast clustering (ECLUB) algorithm for high density skeleton recognition is proposed. Firstly, based on the definition of the local density of the object, the high density skeleton is quickly identified according to the mutual k-nearest neighbor consistency and the local density relation of the nearest neighbor. Then, the unallocated low density points are divided according to the neighborhood relationship, and the final clustering is obtained. Experiments on synthetic data sets and real data sets verify the effectiveness of the proposed algorithm. The clustering results on Olivetti Face datasets show that, The adjusted Rand coefficient (ARI) and normalized mutual information (NMI) of ECLUB algorithm are 0.877 9 and 0.962 2 respectively. Compared with the classical density-based clustering algorithm (DBSCAN), density center clustering algorithm (CFDP) and density skeleton clustering algorithm (CLUB), the proposed ECLUB algorithm is more efficient and accurate for high-dimensional data clustering.
【作者單位】: 鄭州大學(xué)信息工程學(xué)院;
【基金】:河南省基礎(chǔ)與前沿基金資助項目(152300410191)~~
【分類號】:TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙云飛;;基于特征的船舶快速識別[J];信息與電腦(理論版);2012年11期
2 大江東去;;借助美圖看看快速識別人物照片[J];電腦迷;2010年21期
3 陶勝;;人民幣紙幣號碼的快速識別[J];電腦編程技巧與維護(hù);2013年03期
4 李會科;李飛;;高速公路導(dǎo)向系統(tǒng)字體快速識別研究[J];包裝工程;2010年22期
5 張其可,戴連奎;基于近紅外光譜的汽油牌號快速識別[J];化工自動化及儀表;2005年04期
6 孫立功;閻保定;李萍;屠文珂;;基于特征差異的彩色目標(biāo)快速識別方法[J];微計算機(jī)信息;2006年32期
7 倪政林;;領(lǐng)域本體的快速識別研究[J];新鄉(xiāng)學(xué)院學(xué)報(自然科學(xué)版);2012年04期
8 陳恩紅,張振亞,王煦法;相接行凸約束網(wǎng)絡(luò)的快速識別算法[J];軟件學(xué)報;2002年05期
9 曹學(xué)軍;一個快速識別網(wǎng)格化圖紙的方法[J];計算機(jī)學(xué)報;1994年02期
10 王謙,劉t,
本文編號:2306328
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2306328.html
最近更新
教材專著