基于用戶行為特征的E2LSH動(dòng)態(tài)權(quán)重混合推薦算法及應(yīng)用
[Abstract]:In recent years, with the rapid rise of Internet services, users and the amount of information surge, and in these massive data how to accurately, quickly retrieve the data users need, It is an important research direction in the field of big data and data mining. In order to solve this problem, the recommendation system based on its intelligent search for user interest resources, subverts the traditional text retrieval methods, and provides a higher quality user experience. Although the recommendation system has greatly changed the way users obtain information, the traditional recommendation system will encounter problems such as "cold start" and "dimension disaster" in the face of massive sparse data of high dimension. These all put forward the huge challenge to the application of the recommendation system. In this paper, the current mainstream recommendation algorithms are summarized, and the similar nearest neighbor lookup, local sensitivity hashing and collaborative filtering are discussed. It is found that the accuracy of the recommendation algorithm in the face of sparse data has been reduced. At the same time, in the face of massive high dimensional data, the average time of the algorithm is too long. In order to solve these problems, this paper proposes the concepts of user behavior characteristics and dynamic weights, and combines E2LSH algorithm with hybrid recommendation algorithm to construct an accurate and efficient recommendation system. The main work of this paper is as follows: 1. Aiming at the problem of low recommendation accuracy in sparse data, a dynamic weighted hybrid recommendation algorithm based on user behavior feature is proposed in this paper. By preprocessing the data in the original data set, the personalized behavior feature index of different users for different items is calculated, and quantized into the user behavior feature vector, which is introduced into the calculation of similarity. The dynamic weight is calculated according to the individualized difference of user rating data sparsity, and the dynamic mixing of user content based recommendation algorithm and collaborative filtering recommendation algorithm is carried out. The experimental results show that compared with the traditional hybrid recommendation algorithm, the MAE of the proposed algorithm is 2.26% lower than that of the traditional hybrid recommendation algorithm, especially when the data set sparsity is extreme, the improvement of the recommendation effect is more significant. 2. Aiming at the effect of massive high dimensional data on the efficiency of hybrid recommendation algorithm, this paper studies the improved hybrid recommendation algorithm based on E2LSH. On the premise of keeping the similarity of data using E2LSH algorithm, the index of user-item is constructed when the system is offline. The time complexity of searching is reduced from O (N _ S _ 2) to O (1) when users need to search their nearest neighbors online, so as to improve the computing efficiency of filtering dissimilar users without changing the similarity of data. The experimental results show that the algorithm not only keeps the accuracy of the hybrid recommendation algorithm, but also greatly reduces the average computing time of the algorithm and greatly improves the overall calculation efficiency. The proposed hybrid recommendation algorithm based on E2LSH is applied to the cloud detection system of State Grid. When creating the task selection task counterpart, the system can intelligently recommend the appropriate field operator according to the historical information of the personnel, so as to eliminate the flow of manual screening by the user. It greatly improves the user's experience of using the system.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):2296585
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2296585.html