天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

小麥葉部病害識別方法研究及智能手機診斷系統(tǒng)研發(fā)

發(fā)布時間:2018-10-19 06:29
【摘要】:病蟲害是影響農(nóng)作物產(chǎn)量和品質(zhì)的重要因素,如何對其進行實時監(jiān)測和快速準確區(qū)分對指導農(nóng)作物生產(chǎn)管理具有重要意義。傳統(tǒng)的監(jiān)測和區(qū)分方法是通過植保專家抽樣調(diào)查、人工區(qū)分進行判斷,費時費力,難以滿足大面積調(diào)查的需求。隨著科學技術(shù)的快速發(fā)展,植保專家利用圖像處理、模式識別、遙感等技術(shù)對植物病蟲害進行監(jiān)測和識別,取得了顯著效果。但是,已有技術(shù)和開發(fā)的傳感器距離實用、低值、便攜應(yīng)用仍有差距。本論文以小麥葉部條銹病、白粉病為觀測對象,結(jié)合圖像處理和模式識別技術(shù)探索適用儀器開發(fā)的小麥病害快速識別方法,設(shè)計了一款基于Android智能手機的病害診斷系統(tǒng)。主要內(nèi)容、創(chuàng)新點和結(jié)果如下:(1)研究了高通濾波、中值濾波、鄰域平均法3種圖像增強算法用于減少圖像采集環(huán)境帶來的影響;研究了3種分割算法(優(yōu)化分水嶺分割、自動閾值分割和水平集分割),以將病斑從小麥健康葉片中分離出來,用于提取病斑特征。從顏色、形狀和紋理三個方面(共計提取23個病斑特征參數(shù))對小麥葉部病害特征進行描述。試驗結(jié)果表明:單一的圖像增強算法不能達到理想增強效果,且單一的圖像分割算法也不能很好地將目標區(qū)域分割出來。因此,應(yīng)將圖像增強和分割算法進行優(yōu)化以提高其增強和分割效果。(2)研究了相關(guān)向量機(Relevance Vector Machine, RVM)、支持向量機(Support Vector Machine, SVM)口反向傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network, BPNN)三種圖像識別方法。本論文中選取150個不同嚴重程度(含輕度、中度和重度)的小麥葉部病害(條銹病、白粉病)為試驗材料,以輕中度病害為重點,選取其中68個病害葉片為訓練樣本,提取每個病害葉片的顏色、紋理和形狀共計23個特征,利用Relief算法計算病害顏色、紋理和形狀中每個特征的權(quán)重(即對病害識別的貢獻大小),并選取其中20個權(quán)重較大的特征作為SVM、 BPNN和RVM的輸入?yún)?shù),分別建立三種識別模型。通過2組試驗的68個測試樣本驗證,結(jié)果顯示:SVM、BPNN和RVM的平均識別準確率分別為86.76%、91.17%和89.71%,而對輕中度病害的識別準確率分別為86.67%、90.00%和88.33%,其中,RVM的執(zhí)行效率分別是SVM和BP神經(jīng)網(wǎng)絡(luò)的7.96和31.68倍。(3)針對目前裝置攜帶不便、價格昂貴、專業(yè)性要求高等問題,結(jié)合RVM識別算法,開發(fā)了一款基于Android智能手機的小麥葉部病害診斷系統(tǒng)。本文利用Sony DSC-H9相機和SAMSUNG GT-N7100手機采集白粉病和條銹病不同嚴重程度(輕度、中度和重度)樣本各66個(白粉病和條銹病各33個),選取其中48個(白粉病與條銹病各24個)作為訓練樣本,其余用作測試樣本;同時,改變手機采集樣本像素作為另一對照組來研究像素與識別率的關(guān)系,同上安排樣本分布。研究結(jié)果表明:RVM得到的平均識別率為88.89%,病害的正確識別率與采集工具有關(guān),并與其像素成正比。因此,進行病害識別需選擇像素合適的手機以得到較高的準確率。同時,經(jīng)應(yīng)用測試發(fā)現(xiàn),識別一副病害圖片可在20s內(nèi)完成,能夠?qū)崿F(xiàn)對小麥不同嚴重程度葉部病害快速準確識別,這為植保人員田間調(diào)查提供了重要的技術(shù)支持。
[Abstract]:Pest is an important factor affecting the yield and quality of crops, and how to monitor and distinguish it in real time is of great significance to guide crop production management. The traditional method of monitoring and distinguishing is through sample sampling of plant protection experts, artificial differentiation and judgment, and it is difficult to meet the needs of large-area investigation. With the rapid development of science and technology, plant protection experts use the techniques of image processing, pattern recognition and remote sensing to monitor and identify plant diseases and insect pests. However, prior art and developed sensor distances are practical, low, and portable applications still have gaps. This paper uses wheat leaf rust and powdery mildew as the observation object, and probes into the rapid recognition method of wheat disease developed by suitable instrument in combination with image processing and pattern recognition technology, and designs a disease diagnosis system based on Android smart phone. The main content, innovation point and result are as follows: (1) The effects of high-pass filtering, middle value filtering and neighborhood averaging method are studied to reduce the influence of image acquisition environment; 3 segmentation algorithms (optimized watershed segmentation) are studied. Automatic threshold segmentation and horizontal set segmentation) to separate disease spots from wheat healthy leaves for extraction of disease spot characteristics. The disease characteristics of wheat leaf were described from three aspects: color, shape and texture (total extraction of 23 plaque characteristic parameters). The results show that the single image enhancement algorithm can not achieve the ideal enhancement effect, and the single image segmentation algorithm can not partition the target area well. Therefore, image enhancement and segmentation algorithms should be optimized to improve their enhancement and segmentation effects. (2) Three kinds of image recognition methods such as correlation vector machine (RVM), support vector machine (SVM) port inverse propagation neural network (BPNN) are studied. In this paper, 150 wheat leaf diseases (stripe rust and powdery mildew) of 150 different severity (including mild, moderate and severe) were selected as test materials. Among them, 68 disease leaves were selected as training samples, and the color of each disease blade was extracted. The texture and shape are 23 characters, and the weight of each feature in the disease color, texture and shape is calculated by using the Relief algorithm (i.e. the contribution size to the disease recognition), and 20 weight-weight features are selected as input parameters of the SVM, the BPNN and the RVM, and three identification models are respectively established. The results showed that the average recognition accuracy of SVM, BPNN and RVM was 86. 76%, 91. 17% and 89. 71%, respectively, while the accuracy of recognition of mild moderate disease was 86. 67%, 90. 00% and 88. 33%, respectively. The execution efficiency of RVM is 7.96 and 31.68 times that of SVM and BP neural network, respectively. (3) Aiming at the problems of inconvenience, high price, high professional requirement and so on, a diagnosis system of wheat leaf disease based on Android smart phone was developed in combination with RVM recognition algorithm. Sixty-six (33 powdery mildew and stripe rust) samples were collected by Sony DSC-H9 camera and SAMSUNG GT-N7100 cell phone, 48 of them (24 samples of powdery mildew and stripe rust) were selected as training samples and the rest were used as test samples. At the same time, the relationship between the pixel and the recognition rate is studied by changing the sampling pixel of the mobile phone as another control group, and the sample distribution is arranged on the same. The results show that the average recognition rate of RVM is 88. 89%, the correct recognition rate of disease is related to the acquisition tool and is directly proportional to its pixels. Therefore, it is necessary to select a suitable mobile phone for disease recognition to obtain higher accuracy. At the same time, through the application test, identification of a pair of disease pictures can be completed within 20s, and can realize rapid and accurate identification of the diseases of different severity leaf parts of wheat, which provides important technical support for the field investigation of plant protection personnel.
【學位授予單位】:安徽大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S435.12;TP391.41

【參考文獻】

相關(guān)期刊論文 前10條

1 王梅嘉;何東健;任嘉琛;;基于Android平臺的蘋果葉病害遠程識別系統(tǒng)[J];計算機工程與設(shè)計;2015年09期

2 鄭姣;劉立波;;基于Android的水稻病害圖像識別系統(tǒng)設(shè)計與應(yīng)用[J];計算機工程與科學;2015年07期

3 王昊鵬;李慧;;基于局部二值模式和灰度共生矩陣的籽棉雜質(zhì)分類識別[J];農(nóng)業(yè)工程學報;2015年03期

4 張建華;孔繁濤;李哲敏;吳建寨;陳威;王盛威;朱孟帥;;基于最優(yōu)二叉樹支持向量機的蜜柚葉部病害識別[J];農(nóng)業(yè)工程學報;2014年19期

5 戴建國;賴軍臣;;基于圖像規(guī)則與Android手機的棉花病蟲害診斷系統(tǒng)[J];農(nóng)業(yè)機械學報;2015年01期

6 張芳;王璐;付立思;田有文;;基于支持向量機的黃瓜葉部病害的識別研究[J];沈陽農(nóng)業(yè)大學學報;2014年04期

7 王獻鋒;張善文;王震;張強;;基于葉片圖像和環(huán)境信息的黃瓜病害識別方法[J];農(nóng)業(yè)工程學報;2014年14期

8 劉濤;仲曉春;孫成明;郭文善;陳瑛瑛;孫娟;;基于計算機視覺的水稻葉部病害識別研究[J];中國農(nóng)業(yè)科學;2014年04期

9 郭文川;周超超;韓文霆;;基于Android手機的植物葉片面積快速無損測量系統(tǒng)"[J];農(nóng)業(yè)機械學報;2014年01期

10 溫芝元;曹樂平;;基于為害狀色相多重分形的i*柑病蟲害圖像識別[J];農(nóng)業(yè)機械學報;2014年03期

相關(guān)會議論文 前1條

1 郭琦;孔斌;鄭飛;;圖像分割質(zhì)量評價的綜述[A];中國儀器儀表學會第九屆青年學術(shù)會議論文集[C];2007年

相關(guān)博士學位論文 前2條

1 胡秋霞;基于圖像分析的植物葉部病害識別方法研究[D];西北農(nóng)林科技大學;2013年

2 柴阿麗;基于計算機視覺和光譜分析技術(shù)的蔬菜葉部病害診斷研究[D];中國農(nóng)業(yè)科學院;2011年

相關(guān)碩士學位論文 前1條

1 齊龍;基于圖像處理的作物病害診斷及葉片形態(tài)參數(shù)測量技術(shù)的研究[D];吉林大學;2006年

,

本文編號:2280414

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2280414.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶03295***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com