基于粒計算和粗糙集的聚類算法研究
[Abstract]:With the rapid development of global information technology and Internet, the demand for the sharing of various network resources is increasing, and these shared data information cause data expansion and information explosion. How to find a scientific and reasonable way to help people to screen out effective and reliable information from a large number of complicated data is an urgent problem. Data mining is an effective method to solve this problem. It can help people make correct and efficient decision after dealing with specific data professionally. Clustering itself belongs to the key content of data mining, so it becomes the research object of many experts and scholars. Based on the classical clustering method, this paper analyzes the limitations of the clustering algorithm, and then studies the theoretical knowledge of bee swarm algorithm, particle swarm algorithm, rough set and particle computing. The traditional clustering algorithm is optimized by rough set and granular computing. The main work is as follows: (1) the classical K-medoids clustering algorithm has the shortcomings of random acquisition of the starting cluster center, low accuracy and poor global optimization. Therefore, an artificial swarm based optimization clustering algorithm is proposed. The algorithm combines improved particle computation and maximum distance product method to select the initial cluster center, then dynamically adjusts the search step size, and adopts the selection probability based on sorting to select the following bee to lead bee, which increases the speed of the algorithm to complete the final optimization. The probability of premature convergence is reduced. The experimental results show that the algorithm reduces the sensitivity to the initial center distribution, and the accuracy and stability are greatly improved. (2) the K-means clustering method is highly dependent on the center of the starting class and can not handle the boundary object. Because the precision is not high and the stability is poor, the particle swarm and rough set are fused and then applied to the clustering problem. Density and maximum distance product are used to initialize the algorithm and the method of linear decrement and random distribution is used to determine the inertial weight. Then the learning factor is adjusted and the random particle is introduced to increase the diversity of the population. Finally, the improved algorithm is combined with particle swarm optimization and rough set to optimize K-means. The experimental results show that the algorithm weakens the dependence on the original clustering center to a certain extent and can effectively collate the boundary data. The accuracy and stability of the algorithm are also improved.
【學位授予單位】:長沙理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP18;TP311.13
【參考文獻】
相關期刊論文 前10條
1 夏卓群;歐慧;李平;武志偉;戴傲;;基于改進流形距離和人工蜂群的二階段聚類算法[J];控制與決策;2016年03期
2 朱蓉;靳雁霞;范衛(wèi)華;;融合優(yōu)質(zhì)粒子分布的粒子群優(yōu)化算法[J];小型微型計算機系統(tǒng);2015年03期
3 羅可;李蓮;周博翔;;一種蜜蜂交配優(yōu)化聚類算法[J];電子學報;2014年12期
4 袁周米琪;周堅華;;自適應確定K-means算法的聚類數(shù):以遙感圖像聚類為例[J];華東師范大學學報(自然科學版);2014年06期
5 沈艷;余冬華;王昊雷;;粒子群K-means聚類算法的改進[J];計算機工程與應用;2014年21期
6 熊眾望;羅可;;基于改進的簡化粒子群聚類算法[J];計算機應用研究;2014年12期
7 劉露;彭濤;左萬利;戴耀康;;一種基于聚類的PU主動文本分類方法[J];軟件學報;2013年11期
8 黃月;吳成東;張云洲;程龍;孫堯;;基于K均值聚類的二進制傳感器網(wǎng)絡多目標定位方法[J];控制與決策;2013年10期
9 段其昌;唐若笠;徐宏英;李文;;粒子群優(yōu)化魚群算法仿真分析[J];控制與決策;2013年09期
10 趙志剛;黃樹運;王偉倩;;基于隨機慣性權(quán)重的簡化粒子群優(yōu)化算法[J];計算機應用研究;2014年02期
相關博士學位論文 前2條
1 張靜;基于粗糙集理論的數(shù)據(jù)挖掘算法研究[D];西北工業(yè)大學;2006年
2 馬昕;粗糙集理論在數(shù)據(jù)挖掘領域中的應用[D];浙江大學;2003年
相關碩士學位論文 前1條
1 黃雯;數(shù)據(jù)挖掘算法及其應用研究[D];南京郵電大學;2013年
,本文編號:2268494
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2268494.html