基于視覺的靜態(tài)手勢識別中關(guān)鍵技術(shù)的研究
[Abstract]:With the rapid development of information technology, computer, as a great invention, is deeply affecting every aspect of people's life. As an important application of computer technology, natural human-computer interaction technology based on biometrics is closely related to people's daily life. Biometric recognition technology based on computer vision refers to the use of computer technology to process images or video, through the extraction of the unique biological characteristics of the human body, the realization of biological recognition. This technology is becoming a research hotspot in the field of artificial intelligence. Compared with the traditional technology, biometrics has the advantages of convenience and uniqueness. The commonly used biometric features include face fingerprint iris and gesture. Gesture features are more vivid natural and informative than other biometric features. However, due to the uncertainty and multiplicity of human hand, there are still many problems to be solved in hand gesture recognition technology, so gesture recognition is becoming a hot and difficult point in the field of human-computer interaction. Gesture recognition system consists of three parts: image preprocessing, feature extraction and classification recognition. This paper mainly studies the algorithms of static gesture recognition based on vision, especially the feature extraction algorithm and classification recognition algorithm. For these two parts, this paper mainly does the following work: first, the classic feature extraction algorithm and classification recognition algorithm are studied in detail, and their algorithm principle, algorithm steps, advantages and disadvantages are summarized in detail. Secondly, in view of the low recognition rate and large feature dimension of the basic local binary pattern (Local Binary Patterns,LBP) algorithm, a local binary pattern algorithm based on multi-neighborhood weighted fusion is proposed in this paper. This algorithm is an improvement on the basic LBP algorithm. Using different processing strategies, two LBP coded images are calculated from two adjacent points outside each central pixel, and two 256-dimensional histograms are obtained by statistical analysis. Then the two 256-dimensional histograms are uniformly quantized to 32-dimensional. Finally, the two 32-dimensional histograms are weighted and fused to obtain a 32-dimensional histogram as the final feature vector. The experimental results on the gesture database show that the improved algorithm can greatly reduce the feature dimension while increasing the recognition rate of the gesture, thus increasing the operation speed. Thirdly, the non-negative matrix decomposition (Non-Negative Matrix Factorization,NMF) algorithm and the compression sensing (Compressive Sensing,CS) algorithm are studied, and a gesture recognition system is designed using these two algorithms. First, the original high-dimensional image vector is projected into the low-dimensional subspace by NMF algorithm, and then the low-dimensional feature vector is classified by the classifier designed by the CS algorithm, and the result of gesture recognition is obtained. Through a series of experiments, it is proved that the classifier designed by CS algorithm can obtain higher gesture recognition rate and better ability to resist occlusion than other classifiers. On the other hand, (Principal Components Analysis,PCA), NMF algorithm is more robust to occlusion than principal component analysis (PCA).
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易靖國;程江華;庫錫樹;;視覺手勢識別綜述[J];計算機(jī)科學(xué);2016年S1期
2 劉淑萍;劉羽;於俊;汪增福;;結(jié)合手指檢測和HOG特征的分層靜態(tài)手勢識別[J];中國圖象圖形學(xué)報;2015年06期
3 黃仁;胡敏;;綜合顏色空間特征和紋理特征的圖像檢索[J];計算機(jī)科學(xué);2014年S1期
4 武霞;張崎;許艷旭;;手勢識別研究發(fā)展現(xiàn)狀綜述[J];電子科技;2013年06期
5 焦李成;楊淑媛;劉芳;侯彪;;壓縮感知回顧與展望[J];電子學(xué)報;2011年07期
6 戴瓊海;付長軍;季向陽;;壓縮感知研究[J];計算機(jī)學(xué)報;2011年03期
7 劉法旺;丁剛毅;李善青;徐一華;;基于ICONDENSATION算法的人手跟蹤與手勢識別算法[J];北京理工大學(xué)學(xué)報;2007年12期
8 董立巖;苑森淼;劉光遠(yuǎn);賈書洪;;基于貝葉斯分類器的圖像分類[J];吉林大學(xué)學(xué)報(理學(xué)版);2007年02期
9 吳江琴,高文,龐博,韓靜萍;中國手語手勢詞識別的一種快速方法[J];高技術(shù)通訊;2001年06期
10 吳江琴,高文,陳熙霖,劉偉;基于ANN/HMM的中國手語識別系統(tǒng)[J];計算機(jī)工程與應(yīng)用;1999年09期
相關(guān)博士學(xué)位論文 前1條
1 劉昱昊;基于非負(fù)矩陣分解算法的人臉識別技術(shù)的研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 李亞蘭;基于視覺的實時靜態(tài)手勢識別技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 隋文秀;改進(jìn)的SIFT算法在圖像檢索方面的應(yīng)用[D];東北電力大學(xué);2015年
3 隋欣;基于魯棒子空間學(xué)習(xí)的人臉識別技術(shù)[D];電子科技大學(xué);2015年
4 陸華;基于局部二值模式的人臉識別和表情識別研究[D];山東大學(xué);2014年
5 馮謙;基于局部特征的視頻目標(biāo)跟蹤方法研究[D];電子科技大學(xué);2013年
6 陳健斌;圖像特征提取及其相似度的研究和實現(xiàn)[D];西安電子科技大學(xué);2012年
7 程小鵬;基于特征提取的手勢識別技術(shù)研究[D];武漢理工大學(xué);2012年
8 王玲;基于LBP的特征提取研究[D];北京交通大學(xué);2009年
9 蔡曉曦;人臉圖像的特征提取與識別[D];武漢理工大學(xué);2007年
10 郭亞琴;分類器設(shè)計及組合技術(shù)研究[D];揚(yáng)州大學(xué);2007年
,本文編號:2264812
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2264812.html