面向敏感數(shù)據(jù)逐步發(fā)布的差分隱私可調(diào)高斯機(jī)制研究
[Abstract]:Differential privacy (Differential Privacy,DP) is a new privacy protection technology. It can achieve the purpose of privacy protection by adding noise to the original query results and publishing them out. The level of privacy protection under differential privacy is determined by the privacy protection budget 蔚. In view of the past differential privacy data can not be adjusted by adjusting the privacy protection budget to meet the needs of users to change the level of privacy protection, this paper proposes a differential privacy adjustable Gao Si mechanism for the gradual release of sensitive data. The main research contents are as follows: (1) the adjustable Gao Si mechanism is proposed. Proves that in the process of releasing statistical data, To add noise from Gao Si distribution to original data 1V, release the result that satisfies 11 (蔚, 未) -difference privacy 1y. if we adjust the privacy protection budget 1 蔚 to 2 蔚 21 (蔚), add noise 2V on the basis of noise 1V, release more accurate data result 2y. then The final result 12 (YY) satisfies 22 (蔚, 未) -difference privacy. (2) the process of data release under the adjustable Gao Si mechanism is given. The adjustable Gao Si mechanism is used to enlarge the privacy protection budget from 1 蔚 to 2 蔚, and the one-time enlargement of the privacy protection budget is extended to multiple magnification. That is, how much noise is added next time is only related to how much noise is added at present, and not related to the amount of noise added in the past, so that the privacy protection budget can be magnified several times. Thus, the sensitive data can be released step by step under differential privacy. (3) the evaluation of adjustable Gao Si mechanism. Based on the definition of privacy loss under differential privacy, the privacy loss of adjustable Laplace mechanism, Gao Si combination mechanism and adjustable Gao Si mechanism are compared. Verify that the adjustable Gao Si mechanism to enlarge the privacy protection budget has some advantages. This paper makes an experimental analysis on the data release under the adjustable Gao Si mechanism. In the process of enlarging the privacy protection budget by this mechanism, the mean square error of the published data becomes smaller and smaller, that is, the accuracy of the data obtained by the user is getting higher and higher. This research aims at (蔚, 未) -differential privacy in general sense, adjusts the privacy protection budget to release data according to the user's privacy needs, makes the balance between privacy data protection and use easier, and promotes the application of differential privacy. To promote the development of big data's technology.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP309
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王紅;葛麗娜;王麗穎;張靜;張翼鵬;;面向數(shù)據(jù)直方圖發(fā)布的差分隱私保護(hù)綜述[J];計(jì)算機(jī)應(yīng)用研究;2017年06期
2 穆海蓉;丁麗萍;宋宇寧;盧國(guó)慶;;DiffPRFs:一種面向隨機(jī)森林的差分隱私保護(hù)算法[J];通信學(xué)報(bào);2016年09期
3 張嘯劍;孟小峰;;基于差分隱私的流式直方圖發(fā)布方法[J];軟件學(xué)報(bào);2016年02期
4 何賢芒;王曉陽(yáng);陳華輝;董一鴻;;差分隱私保護(hù)參數(shù)ε的選取研究[J];通信學(xué)報(bào);2015年12期
5 張文靜;李暉;;差分隱私保護(hù)下的數(shù)據(jù)分級(jí)發(fā)布機(jī)制[J];網(wǎng)絡(luò)與信息安全學(xué)報(bào);2015年01期
6 朱天清;何木青;鄒德清;;基于差分隱私的大數(shù)據(jù)隱私保護(hù)[J];信息安全研究;2015年03期
7 王俊麗;管敏;魏紹臣;;面向社交網(wǎng)絡(luò)分析的差分隱私保護(hù)研究綜述[J];高技術(shù)通訊;2015年03期
8 丁麗萍;盧國(guó)慶;;面向頻繁模式挖掘的差分隱私保護(hù)研究綜述[J];通信學(xué)報(bào);2014年10期
9 孟小峰;張嘯劍;;大數(shù)據(jù)隱私管理[J];計(jì)算機(jī)研究與發(fā)展;2015年02期
10 張嘯劍;孟小峰;;面向數(shù)據(jù)發(fā)布和分析的差分隱私保護(hù)[J];計(jì)算機(jī)學(xué)報(bào);2014年04期
相關(guān)博士學(xué)位論文 前1條
1 李楊;差分隱私保護(hù)數(shù)據(jù)聚合優(yōu)化方法及其在數(shù)據(jù)可視化中的應(yīng)用[D];廣東工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 王寶楠;基于差分隱私拉普拉斯機(jī)制的線性回歸分析研究[D];安徽理工大學(xué);2016年
,本文編號(hào):2259081
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2259081.html