融合全局與局部特征的相似視頻片段快速檢測(cè)技術(shù)研究
[Abstract]:On the basis of deeply understanding the research status of similar key-frame detection and similar video detection at home and abroad, this paper analyzes the shortcomings of the two methods, and makes some progress in the following aspects. Firstly, the key frame global color histogram is improved, and the illumination-scale gold tower feature is proposed. By constructing the brightness of the key frame and clipping the pyramid of the scale space, the robustness of the feature to the illumination and scale clipping transformation is improved. Experiments show that the detection recall rate of similar key frames based on global illumination scale pyramid features is better than that based on global color histogram. When the threshold of similar distance is? (28) 2, the recall rate of the algorithm reaches 95.2%. Secondly, aiming at the disadvantages of high dimension and low computational efficiency of SIFT feature data, a scale-invariant feature acceleration algorithm (ScSIFT).) based on sparse coding is proposed. The SIFT features are represented sparsely by an overcomplete dictionary and a secondary feature index structure is established to improve the computing speed and retrieval efficiency of the feature distance. The experimental results show that the Ssift algorithm is similar to the SIFT algorithm, but the efficiency of the algorithm is 52% higher than that of the latter. Finally, based on the illumination scale pyramid feature scsift algorithm proposed in this paper and the sequential block sequence algorithm, a fast detection algorithm for similar video segments is proposed, which combines global and local features. The algorithm combines the advantages of fast global feature operation and high accuracy of local feature computation in similar video segment detection. The experimental results show that the accuracy of the algorithm is higher than that of the traditional algorithm, reaching 78.2. At the same time, the efficiency of the algorithm is high.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭勃宇;王崴;周誠(chéng);劉曉衛(wèi);;面向增強(qiáng)現(xiàn)實(shí)的SUSAN-SURF快速匹配算法[J];計(jì)算機(jī)應(yīng)用研究;2015年08期
2 郭延明;謝毓湘;老松楊;白亮;;相似視頻片段的檢測(cè)與定位方法研究[J];計(jì)算機(jī)科學(xué);2014年10期
3 姜超;耿則勛;婁博;魏小峰;沈忱;;基于GPU的SIFT特征匹配算法并行處理研究[J];計(jì)算機(jī)科學(xué);2013年12期
4 張正炎;屈小波;林雁勤;陳忠;;基于近似l_0范數(shù)最小化的NMR波譜稀疏重建算法[J];波譜學(xué)雜志;2013年04期
5 吳瀟;李錦濤;唐勝;郭俊波;;基于時(shí)空軌跡行為特征的視頻拷貝檢測(cè)方法[J];計(jì)算機(jī)研究與發(fā)展;2010年11期
6 張志杰;鄒建華;;面向壓縮域視頻拷貝檢測(cè)的主要邊緣相對(duì)相位算法[J];西安交通大學(xué)學(xué)報(bào);2010年10期
7 王瑞;梁華;蔡宣平;;基于GPU的SIFT特征提取算法研究[J];現(xiàn)代電子技術(shù);2010年15期
8 王金德;李曉燕;壽黎但;陳剛;;面向近重復(fù)圖像匹配的SIFT特征裁減算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2010年06期
9 文軍;吳玲達(dá);曾璞;謝毓湘;;新聞視頻中基于“場(chǎng)景詞匯”的故事單元相似度分析[J];國(guó)防科技大學(xué)學(xué)報(bào);2009年06期
10 張勇東;張冬明;郭俊波;唐勝;;壓縮域快速視頻拷貝檢測(cè)算法[J];通信學(xué)報(bào);2009年03期
相關(guān)碩士學(xué)位論文 前1條
1 吳伊萍;中文微博情感分類研究[D];華僑大學(xué);2013年
,本文編號(hào):2250449
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2250449.html