基于實(shí)時(shí)存儲(chǔ)的海量大氣顆粒物在線分析系統(tǒng)的研究
[Abstract]:In recent years, domestic haze weather frequently, the scope is wide, the time is long, seriously affects the people's health, but also causes the bigger threat to the transportation, the electric power and the agriculture, the haze management has already caused the government and the society to pay close attention. However, due to the fact that the situation of air pollution in major cities is different and affected by the factors such as geographical location, meteorological conditions, industrial composition and urban pattern, it is necessary to carry out qualitative and quantitative scientific research on the sources of urban pollution in order to control the environmental pollution. Therefore, the prevention and cure measures have obvious pertinence. The monitoring and analysis of atmospheric particulate matter is an important means to understand the air quality, while the traditional analysis of atmospheric particulate matter mainly depends on the overall analysis technology of particulate matter, and manually identifies the category and source of particulate matter. These techniques have obvious defects. The traditional particle mass analysis method can not reflect the internal characteristics of particles, but the current analysis technology based on single particle mass spectrometer is more scientific and can collect GB data per day. The traditional relational database is not suitable for the traditional manual analysis method of this scene, which takes a long time, high labor cost and low accuracy. In the face of large amount of data, there is no way to analyze particulate matter automatically. Aiming at the defects of traditional atmospheric particulate matter analysis technology, this paper designs an on-line analysis system of massive atmospheric particulate matter based on real-time storage technology. The system consists of two subsystems. It is a mass data storage subsystem RyDB based on Google levelDB storage engine and an online analysis subsystem based on data mining. The underlying data storage system (RyDB) is a KV type NoSQL database, which uses levelDB storage engine to support master-slave replication and cluster deployment, and is used to store atmospheric particulate data collected in real time or offline. Data mining techniques such as adaptive resonance theory (ART) network clustering and logical regression classification are used in the upper layer online analysis system to realize the classification statistics and source analysis of particulate matter data. The experimental results show that the data storage system RyDB has excellent performance, can read and write 100000 times per second in the test environment, has the characteristics of high throughput and low delay, and can meet the demand of real-time storage. 320000 groups of particles can be analyzed in two hours, and the accuracy of classification of particulate matter is more than 80%, which meets the requirement of the system and realizes the automatic analysis of particulate matter data.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院沈陽(yáng)計(jì)算技術(shù)研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王康;李東靜;陳海光;;分布式存儲(chǔ)系統(tǒng)中改進(jìn)的一致性哈希算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2016年07期
2 胡局新;張功杰;;基于K折交叉驗(yàn)證的選擇性集成分類算法[J];科技通報(bào);2013年12期
3 方錦清;;大數(shù)據(jù)浪潮沖擊下網(wǎng)絡(luò)科學(xué)與工程面臨的挑戰(zhàn)與機(jī)遇[J];自然雜志;2013年05期
4 陳明星;;城市化與經(jīng)濟(jì)發(fā)展關(guān)系的研究綜述[J];城市發(fā)展研究;2013年08期
5 申德榮;于戈;王習(xí)特;聶鐵錚;寇月;;支持大數(shù)據(jù)管理的NoSQL系統(tǒng)研究綜述[J];軟件學(xué)報(bào);2013年08期
6 崔杰;李陶深;蘭紅星;;基于Hadoop的海量數(shù)據(jù)存儲(chǔ)平臺(tái)設(shè)計(jì)與開發(fā)[J];計(jì)算機(jī)研究與發(fā)展;2012年S1期
7 楊錦;李肯立;吳帆;;異構(gòu)分布式系統(tǒng)的負(fù)載均衡調(diào)度算法[J];計(jì)算機(jī)工程;2012年02期
8 張琳;陳燕;汲業(yè);張金松;;一種基于密度的K-means算法研究[J];計(jì)算機(jī)應(yīng)用研究;2011年11期
9 銀燕;童堯青;魏玉香;王體健;李嘉鵬;楊衛(wèi)芬;樊曙先;;南京市大氣細(xì)顆粒物化學(xué)成分分析[J];大氣科學(xué)學(xué)報(bào);2009年06期
10 賀玲;吳玲達(dá);蔡益朝;;數(shù)據(jù)挖掘中的聚類算法綜述[J];計(jì)算機(jī)應(yīng)用研究;2007年01期
相關(guān)博士學(xué)位論文 前3條
1 楊英儀;面向云存儲(chǔ)副本復(fù)制的一致性關(guān)鍵技術(shù)研究[D];華南理工大學(xué);2015年
2 李磊;單顆粒氣溶膠質(zhì)譜儀的改進(jìn)及環(huán)境應(yīng)用[D];上海大學(xué);2014年
3 劉應(yīng)波;太陽(yáng)望遠(yuǎn)鏡海量數(shù)據(jù)存儲(chǔ)關(guān)鍵技術(shù)研究[D];中國(guó)科學(xué)院研究生院(云南天文臺(tái));2014年
相關(guān)碩士學(xué)位論文 前9條
1 楊成閣;貴陽(yáng)市PM_(10)、PM_(2.5)及其中多環(huán)芳烴的污染特征與來(lái)源解析研究[D];貴州師范大學(xué);2014年
2 張鵬翔;云計(jì)算下基于SVM的沙塵暴數(shù)據(jù)挖掘研究[D];內(nèi)蒙古工業(yè)大學(xué);2014年
3 余駿;面向海量天文數(shù)據(jù)的分布式存儲(chǔ)引擎的研究[D];天津大學(xué);2014年
4 張莉;基于單顆粒氣溶膠質(zhì)譜信息的分類方法研究及其應(yīng)用[D];上海大學(xué);2013年
5 李旭;五種決策樹算法的比較研究[D];大連理工大學(xué);2011年
6 楊宸鑄;基于HADOOP的數(shù)據(jù)挖掘研究[D];重慶大學(xué);2010年
7 王丹;遼寧省大氣環(huán)境監(jiān)測(cè)數(shù)據(jù)分析系統(tǒng)研究[D];東北大學(xué) ;2009年
8 韋德志;城市區(qū)域空氣質(zhì)量的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)研究[D];華中科技大學(xué);2009年
9 華敏潔;大氣環(huán)境質(zhì)量模型和GIS結(jié)合的研究[D];上海師范大學(xué);2005年
,本文編號(hào):2244048
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2244048.html