Ranking with Adaptive Neighbors
發(fā)布時間:2018-09-13 14:05
【摘要】:Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, to document retrievals. Stateof-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graphbased approaches, in particular, define various diffusion processes on weighted data graphs. Despite success,these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study,we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores.The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.
[Abstract]:Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, to document retrievals. Stateof-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graphbased approaches, in particular, define various diffusion processes on weighted data graphs. Despite success,these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study,we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores.The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.
【作者單位】: Cixi
【分類號】:TP311.13
[Abstract]:Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, to document retrievals. Stateof-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graphbased approaches, in particular, define various diffusion processes on weighted data graphs. Despite success,these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study,we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores.The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.
【作者單位】: Cixi
【分類號】:TP311.13
【相似文獻】
相關(guān)期刊論文 前8條
1 陳方瓊;余正濤;毛存禮;吳則鍵;張優(yōu)敏;;Expert ranking method based on ListNet with multiple features[J];Journal of Beijing Institute of Technology;2014年02期
2 GAO Ning;DENG ZhiHong;L,
本文編號:2241386
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2241386.html
最近更新
教材專著