基于圖像處理的礦石粒度檢測方法研究
[Abstract]:Ore particle size is an important index of mineral processing technology. Grinding operation needs to detect ore particle size and adjust the corresponding process parameters according to the test results. At present, conventional methods such as sieving and settling are often used to detect particle size. These methods are time-consuming, inefficient and subject to the subjective influence of the examiners. In view of the shortcomings of the previous detection methods, this paper adopts the detection method based on digital image processing. It has been proved by practice that this detection method can analyze and measure the ore particle size quickly and accurately. The main content of this thesis is 1: 1. Preprocessing the original image, first graying the original image, then adjusting the contrast between the target ore particles and the background, then analyzing and comparing two typical filtering algorithms. Select median filter algorithm to filter image noise. 2. The mineral image is segmented. The different segmentation algorithms are analyzed and compared. Finally, the threshold-based image segmentation method is used to separate the target ore particles from the background successfully. Morphological processing of mineral image. The segmented image is processed by morphology to smooth the noise of the image and fill the hole. 4. The division of mineral particles. Based on the traditional watershed algorithm, this paper analyzes and compares the segmentation effects of several improved watershed algorithms. Finally, the watershed segmentation algorithm based on marker control is used to separate the adhesion particles successfully. The connected region of the processed image is marked, the number of pixels in each connected domain is calculated, and the actual particle size of the ore is obtained by the scale conversion. The software is compiled, the granularity distribution curve is outputted, and the results of software analysis and screening are compared. It is proved by experiments that the detection method in this paper is successful, and the particle size distribution of ore is calculated effectively. Compared with the traditional method, the method based on image processing has the advantages of simple operation, accuracy and high efficiency, at the same time, The on-line detection of ore size has also achieved good results. This method is of great significance to improve the grinding efficiency and promote the development of mineral processing automation.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD91;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 王俊萍;李磊;王玲;;MLA在非金屬礦物粒度及解離度測定中的應(yīng)用[J];有色金屬(選礦部分);2013年S1期
2 馬國兵;肖培如;;基于小波的圖像去噪研究綜述[J];工業(yè)控制計算機;2013年05期
3 方明山;肖儀武;童捷矢;;MLA在鉛鋅氧化礦物解離度及粒度測定中的應(yīng)用[J];有色金屬(選礦部分);2012年03期
4 方莉;張萍;;經(jīng)典圖像去噪算法研究綜述[J];工業(yè)控制計算機;2010年11期
5 刁智華;趙春江;郭新宇;陸聲鏈;王秀徽;;分水嶺算法的改進方法研究[J];計算機工程;2010年17期
6 劉國宏;郭文明;;改進的中值濾波去噪算法應(yīng)用分析[J];計算機工程與應(yīng)用;2010年10期
7 邢真武;楊均彬;王靜美;;用于礦物加工生產(chǎn)中的粒度檢測技術(shù)之發(fā)展現(xiàn)狀[J];有色設(shè)備;2009年05期
8 辛登科;張玉杰;蘇治果;;圖像處理在粉末粒度在線檢測系統(tǒng)中的應(yīng)用[J];計算機工程與設(shè)計;2008年13期
9 曾云南;;現(xiàn)代選礦過程粒度在線分析儀的研究進展[J];有色設(shè)備;2008年02期
10 賈木欣;;國外工藝礦物學(xué)進展及發(fā)展趨勢[J];礦冶;2007年02期
相關(guān)碩士學(xué)位論文 前3條
1 李龍茂;基于數(shù)字圖像處理技術(shù)的粒度在線檢測方法研究[D];江西理工大學(xué);2014年
2 王大海;計算機圖像處理技術(shù)在礦物顆粒粒度檢測中的應(yīng)用[D];江西理工大學(xué);2008年
3 張學(xué)禮;計算機數(shù)字圖像處理技術(shù)在在線礦物粒度檢測中的應(yīng)用[D];昆明理工大學(xué);2006年
,本文編號:2240721
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2240721.html