基于機(jī)器視覺的鍋爐關(guān)鍵管道宏觀位移檢測方法研究及應(yīng)用
[Abstract]:The creep and macroscopic displacement of boiler steam pipeline are important aspects of boiler safety operation. The real-time monitoring of the above displacement can reflect the stress and strain situation in boiler steam pipeline. In order to accurately obtain the macroscopic displacement of pipeline in real time and online, this paper, based on the research of visual measurement technology, makes use of the structural relationship between the support hanger and the pipeline. This paper presents a vision-based measurement method for macroscopic displacement and creep of boiler critical pipes, and designs an on-line detection system using this method. The creep condition and macroscopic displacement detection method of boiler steam pipeline are put forward. By spot welding two mark circles under the spring support and hanger, the method takes the mark circle center as the mark point, and according to the three dimensional space coordinate of the mark circle center, By fitting the straight line equation of the lower node of the spring support hanger and the cylinder curve equation of the steam pipeline, the intersection point of the two points can be obtained. According to the change of the coordinate of the intersection point, the macroscopic displacement of the point can be obtained. The creep of the pipe between two or more supports and hangers can be obtained according to the variation of the distance between the points of intersection between the two or more supports and hangers by converting the intersection points of the support and hanger to the same coordinate system. In order to get the 3D coordinate of the mark circle center in real time, this paper adopts the sign circle vision detection algorithm, that is, the image is first grayscale and grayscale histogram analysis, then the image is de-noised, and then the image is binarized. The contour of mark circle is extracted by edge feature, and the pixel coordinate of mark circle is obtained by Hough transform. Finally, the 3D coordinate of mark circle center is obtained according to the pinhole imaging model. The feasibility of the method is verified by experiments. A new image processing algorithm based on HSV model is proposed in view of the complex environment such as strong illumination, marked circle surface area ash and so on, in which the detection error is large or even undetectable by conventional methods. This method can effectively solve the problems of strong illumination, surface area ash and so on by a series of mathematical combination operations and adjustment of hue, saturation and luminance ratio coefficient of H component S component and V component in HSV. The simulation results show that the method is effective. A set of boiler pipeline macro displacement measurement system is designed, which runs in No. 1 unit of Zhuhai Power Plant. The software system is developed by using VC in the VS2013 development environment. The experimental results show that the system can detect the macroscopic displacement of boiler pipeline in real time and online all the time, and the precision is high. The successful application of this method has laid a foundation for the establishment of failure probability and residual life model of boiler steam pipeline.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;TK228
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王偉;鐘萬里;林介東;許傳龍;丁輝;;電站鍋爐高溫?zé)煔鈱Ρ诿婕t外測溫的影響[J];儀表技術(shù)與傳感器;2016年01期
2 李龍光;蘇靜;韓海倫;喬海強(qiáng);錢帆;;不同光照條件下二值化技術(shù)研究及應(yīng)用[J];電子世界;2015年20期
3 蔡磊;王贊超;岳桂金;;復(fù)雜背景下的圖像去噪處理方法[J];科技與企業(yè);2015年13期
4 劉玉;;數(shù)字圖像處理技術(shù)[J];通訊世界;2015年05期
5 高如新;王俊孟;;雙目立體視覺求取三維坐標(biāo)的方法研究[J];計(jì)算機(jī)仿真;2014年10期
6 張燕紅;韓慶龍;劉瑜;李祁;;基于邊緣檢測的分割方法的研究及Matlab實(shí)現(xiàn)[J];福建電腦;2014年09期
7 王萬國;王濱海;張晶晶;李麗;;基于直方圖規(guī)定化的圖像去霧算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年09期
8 宋曉宇;袁帥;郭寒冰;劉繼飛;;基于自適應(yīng)閾值區(qū)間的廣義Hough變換圖形識別算法[J];儀器儀表學(xué)報(bào);2014年05期
9 張藝雪;;基于直方圖的X線醫(yī)學(xué)圖像增強(qiáng)及Matlab實(shí)現(xiàn)[J];通化師范學(xué)院學(xué)報(bào);2014年04期
10 葉峰;陳燦杰;賴乙宗;陳劍東;;基于有序Hough變換的快速圓檢測算法[J];光學(xué)精密工程;2014年04期
相關(guān)博士學(xué)位論文 前2條
1 戴金波;基于視覺信息的圖像特征提取算法研究[D];吉林大學(xué);2013年
2 孫雙花;視覺測量關(guān)鍵技術(shù)及在自動檢測中的應(yīng)用[D];天津大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 孫付超;基于OpenCV的圖像預(yù)處理在儀表定位中的應(yīng)用[D];山東大學(xué);2015年
2 吳超偉;基于遠(yuǎn)程監(jiān)測的電站鍋爐厚壁承壓元件壽命管理[D];浙江大學(xué);2014年
3 武云龍;鍋爐集箱熱應(yīng)力有限元分析及裂紋擴(kuò)展速率的研究[D];天津大學(xué);2012年
4 王娟;SMT模板的自動影像檢測系統(tǒng)的研究[D];華南理工大學(xué);2010年
5 楊全銀;基于Hough變換的圖像形狀特征檢測[D];山東大學(xué);2009年
6 孫小勇;結(jié)構(gòu)腐蝕損傷的波激勵(lì)—散斑檢測技術(shù)研究[D];南京航空航天大學(xué);2008年
7 萬敏;電子散斑干涉檢測技術(shù)的研究[D];南京航空航天大學(xué);2008年
8 熊倫;激光散斑相關(guān)計(jì)量系統(tǒng)的研究[D];華中師范大學(xué);2007年
9 王開龍;電廠鍋爐部件壽命損耗的研究及應(yīng)用[D];華北電力大學(xué)(北京);2006年
10 陳大慶;數(shù)字散斑相關(guān)技術(shù)及在結(jié)構(gòu)監(jiān)測中的應(yīng)用[D];蘇州大學(xué);2005年
,本文編號:2236389
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2236389.html