基于屬性分析的測試用例集優(yōu)化技術(shù)研究
[Abstract]:Software testing is one of the most important means of software quality assurance. Software testing includes test case design, test case execution and test result review. In order to reduce the cost of software testing and improve the efficiency of software testing, a series of automatic testing techniques are proposed and implemented, such as automatic test input generation and test application. Automated test input generation often generates a large number of redundant test cases and incurs a large amount of overhead for later test case review and analysis. Test case set optimization techniques are intended to reduce this overhead by reducing the number of test cases that need to be run, reviewed, and analyzed. When the expected output of test cases can not be automatically acquired and compared, the test case set optimization technique based on program behavior clustering is used to get the program behavior information. By clustering the program behavior information, the test case set is optimized and the requirement is reduced. The problem with this method is that it treats all program elements equally when analyzing program behavior, making clustering unsatisfactory. Another problem is that the test suite optimization technique based on program behavior coverage is used when the expected output of test cases can be automatically obtained and compared. The coverage of program execution behavior can be collected and analyzed to optimize the test suite. However, after a case study of Huawei, this paper finds that developers and testers do not collect program execution behavior for the sake of safety and correctness in testing large-scale industrial systems. In this case, only In order to overcome the problem of test suite optimization based on program behavior clustering, a test suite optimization technique based on attribute weighting (Weig) is proposed in this paper. Error location techniques use execution profiles and selected test case execution success failure information to compute suspicious values for each program element. WAS uses suspicious values computed by error location techniques to adjust the initial execution profile and construct a weighted test case execution profile. This paper uses Crosstab, Jaccard, Ochiai, Tarantula, H3c and H3b as the input of the next round of clustering. Six widely studied and used spectrum-based error location techniques are used as the weighting method of the execution profile. The tested programs are seven widely used open source programs (make, ant, sed, flex, grep, gzip and space). WAS and four Classical clustering filtering techniques are compared (one per cluster, N per cluster, adaptive sampling and ESBS). 184 error versions of programs with single and multiple faults are evaluated in experiments. The experimental results show that the proposed WAS performs better than the other four filtering techniques in Recall and recision indices. In this paper, based on a case study in Huawei, we propose a Category Selection Based Adaptive Random Testing (CSBART). CSBART is a Linear-Order Algorithm for Adaptive Random Testing (LART). CSBART uses two category selection methods. One is the Input Profile (IP) method. The idea of IP is to define a more frequent choice that occurs in a failed test as a failure-related choice. Ce.IP identifies categories that are closely related to test case execution failure by counting the frequency of choice occurrences associated with failure. The second method is a category selection method based on Mutual Information (MI). The greater the amount of information, the closer the correlation between the category and the success or failure of test cases. In this paper, CSBAR T was studied in Huawei's industrial environment and compared with Random Testing (RT), LART, clustering-based technology n per cluster sampling and adaptive sampling. The results show that CSBAR T performs better than other techniques in discovering test cases that reveal faults. This paper proposes a test case set optimization method based on attribute analysis based on WAS and CSBART. In this paper, a prototype framework of test case set optimization based on attribute analysis is proposed. The corresponding tools are implemented in Huawei's industrial research case and passed the review of professional testers.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 章曉芳;陳林;徐寶文;聶長海;;測試用例集約簡問題研究及其進(jìn)展[J];計(jì)算機(jī)科學(xué)與探索;2008年03期
2 郭晶晶;高建華;;基于冗余測試用例的最小測試用例集生成方法[J];計(jì)算機(jī)工程;2010年01期
3 崔應(yīng)霞;李龍澍;姚晟;;組合測試用例集的動(dòng)態(tài)生成算法[J];電子科技大學(xué)學(xué)報(bào);2011年04期
4 梁凡;宋曉秋;;基于二組合的測試用例集生成及精簡方法研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2014年05期
5 聶長海,徐寶文;一種最小測試用例集生成方法[J];計(jì)算機(jī)學(xué)報(bào);2003年12期
6 王子元;聶長海;徐寶文;史亮;;相鄰因素組合測試用例集的最優(yōu)生成方法[J];計(jì)算機(jī)學(xué)報(bào);2007年02期
7 朱海燕;;軟件測試用例集縮減的一個(gè)算法[J];微電子學(xué)與計(jì)算機(jī);2007年01期
8 王捷民;熊建國;宋瀚濤;丁剛毅;;互補(bǔ)策略的簡化測試用例集方法研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2007年11期
9 孫繼榮;李志蜀;倪建成;李寶林;;回歸測試用例集優(yōu)化策略[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2008年S2期
10 韓斌;;基于程序關(guān)聯(lián)圖的測試用例集縮減算法[J];機(jī)電工程;2008年05期
相關(guān)會(huì)議論文 前4條
1 孫富強(qiáng);王林章;;多需求驅(qū)動(dòng)的測試用例集約簡方法[A];全國第20屆計(jì)算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議(CACIS·2009)暨全國第1屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集(下冊)[C];2009年
2 譚濤;宋雁翔;;一種有效的測試用例集約簡方法[A];2008年航空試驗(yàn)測試技術(shù)峰會(huì)論文集[C];2008年
3 陳欣;高建華;;測試用例集的雙優(yōu)排序研究[A];第六屆中國測試學(xué)術(shù)會(huì)議論文集[C];2010年
4 莫毓昌;劉宏偉;左德承;楊孝宗;;FTCL:面向Statechart描述的測試用例集自動(dòng)生成工具(英文)[A];第五屆中國測試學(xué)術(shù)會(huì)議論文集[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 潘麗麗;軟件測試用例集簡化及其構(gòu)建方法研究[D];湖南大學(xué);2009年
2 陳翔;組合測試技術(shù)及應(yīng)用研究[D];南京大學(xué);2011年
3 崔應(yīng)霞;組合測試技術(shù)的研究與應(yīng)用[D];安徽大學(xué);2011年
4 王立新;軟件測試數(shù)據(jù)的高效生成及測試方法研究[D];東華大學(xué);2011年
5 劉新忠;關(guān)聯(lián)缺陷及其應(yīng)用研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王雅婷;參數(shù)帶權(quán)值的組合測試用例集生成研究[D];安徽大學(xué);2015年
2 李忍;回歸測試用例集優(yōu)化技術(shù)研究[D];江蘇科技大學(xué);2015年
3 吳化堯;基于搜索的組合測試[D];南京大學(xué);2014年
4 華麗;基于蟻群算法的測試用例集約簡技術(shù)研究[D];西南大學(xué);2009年
5 吳潔;一種基于程序切片的測試用例集約簡方法研究[D];西南大學(xué);2010年
6 張瑞;基于改進(jìn)蟻群算法的測試用例集約簡技術(shù)研究[D];華南理工大學(xué);2012年
7 程曉菊;測試用例集約簡技術(shù)研究[D];湖南大學(xué);2011年
8 張立久;回歸測試用例集分類約簡研究[D];南京大學(xué);2012年
9 陳陽梅;基于K中心點(diǎn)的測試用例集約簡研究[D];西南大學(xué);2012年
10 張妍;回歸測試用例集極小化及構(gòu)建方法的應(yīng)用研究[D];廣東工業(yè)大學(xué);2015年
,本文編號(hào):2234967
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2234967.html