基于熵和相關(guān)接近度的混合高斯目標(biāo)檢測(cè)算法
發(fā)布時(shí)間:2018-09-08 10:35
【摘要】:針對(duì)固定模型個(gè)數(shù)的混合高斯模型的背景建模速度慢和運(yùn)動(dòng)目標(biāo)的拖影問題,提出了一種基于Tsallis熵和相關(guān)接近度的改進(jìn)混合高斯算法。該算法利用Tsallis熵對(duì)高斯模型自適應(yīng)地選擇模型個(gè)數(shù),加速背景建模;對(duì)于模型匹配判斷條件,不能很好地體現(xiàn)相鄰像素點(diǎn)的空間相關(guān)性的情況,提出了相關(guān)接近度作為模型更新的限定條件,以去除拖影。實(shí)驗(yàn)結(jié)果表明,改進(jìn)的算法在實(shí)時(shí)性、檢測(cè)正確率方面都有較好的改進(jìn)。
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者單位】: 蘭州理工大學(xué)計(jì)算機(jī)與通信學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61263019)資助
【分類號(hào)】:TP391.41
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者單位】: 蘭州理工大學(xué)計(jì)算機(jī)與通信學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61263019)資助
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 艾凱文;胡桂明;李維維;;一種融合雨滴檢測(cè)算法的混合高斯模型[J];裝備制造技術(shù);2012年05期
2 王威;張鵬;高偉;王潤(rùn)生;;基于局部層次化混合高斯模型的視頻序列運(yùn)動(dòng)目標(biāo)檢測(cè)[J];信號(hào)處理;2009年05期
3 陳延濤;;一種改進(jìn)的混合高斯模型運(yùn)動(dòng)目標(biāo)檢測(cè)方法[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
4 張燕平;白云球;趙勇;趙姝;;應(yīng)用改進(jìn)混合高斯模型的運(yùn)動(dòng)目標(biāo)檢測(cè)[J];計(jì)算機(jī)工程與應(yīng)用;2010年34期
5 李娟;邵春福;楊勵(lì)雅;;基于混合高斯模型的行人檢測(cè)方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2011年01期
6 金廣智;石林鎖;白向峰;滕明春;;基于混合高斯模型的新型目標(biāo)檢測(cè)系統(tǒng)[J];計(jì)算機(jī)應(yīng)用;2011年12期
7 田,
本文編號(hào):2230271
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2230271.html
最近更新
教材專著